EEE Parts Verification Specification

for Domestic Space Program

(Top Level Guideline)

CONTENTS

I. Top Level Guideline	1
II. Generic EEE Parts Verification Test Specification	9
1. Generic Specification	10
2. Hybrid Microcircuits	14
3. Heaters	10
4. Magnetics	10
5. Microcircuits, Monolithic	10
6. Microcircuits, PEM	10
7. Discrete Semiconductor	10
8. Capacitors	10
9. Crystal	10
10. Crystal Oscillators	10
11. Relays	10
12. Resistors	10
13. Filters	10
14. Fuses	10
15. Thermistors	10
16. Wire and Cable	10

I. Top Level Guideline

1. Purpose

This specification documents issued for use in domestic space program as a guideline for verification of EEE parts. This document can be used in domestic test facility for EEE part verification test.

2. Scope

- This document and related specifications are intended to focus on verification test requirements of the EEE parts at this time
- General developments and quality requirements other than test are not fully covered by this verification documents
- This document address top level guidelines to use this and related documents for verification application of EEE parts

3. General Policy

This top level document address overall policy of verification test, and as a lower level document, generic specification, defines generic requirements for each part types. Specific test conditions and flows shall be defied in detail specification including any deviations from generic specification.

4. Documents Structure

- KR-EEE-001, EEE Parts Verification Specification for Domestic Space Program: Top level document of verification test specifications
- KR-EEE-GSP-001, Generic EEE Parts Verification Test Specification for Domestic Space Program

5. Applicable Documents

- MIL- STD-883 Test Method Standard, Microcircuits
- MIL- STD-750 Test Methods for Semiconductor Devices
- MIL-STD-202 Test Method Standard, Electronic and Electrical Component Parts
- MIL-STD-1580 Test Method Standard, Destructive Physical Analysis for EEE P a r t s
- EEE-INST-002 Instructions for EEE Parts Selection, Screening, Qualification, and Derating
- ECSS-Q-ST-60, Space Product Assurance Electrical, electronic and electromechanical (EEE) components

Top Level Doc.

Summary

6. Order of Precedence

- In the event of a conflict between the text of this specification and the applicable specifications, the following order of precedence shall apply:
 - i) Detail specification
 - ii) Generic specification
 - iii) This document

7. Categories of EEE part

- Part type covered in this document and generic document, KR-EEE-GSP-001, categorized as following
 - i) Generic part type: General type of part which contains various detail part type
 - ii) Detail part type: Detail type of part, categorized from generic part type according to variance of function, material, package, etc.

Summary

8. Verification Test

- Various kind of test flow exist which shall be applied in space application by purpose of verification and quality status of the part. Definitions and guidelines of each verification test are as follows
 - i) Screening test :
- The purpose of screening is to detect and remove defective parts and reduce infant mortality failures (parts with random defects that are likely to result in early failures, known as infant mortality).
 - Screening test should be performed on all samples of part (100% samples)
 - Screening test flow is the first step of verification test.
 - Test requirements are different for each part type and each quality level. Generic and detail specification describe specific screening guidelines for each part type and each quality level.
 - ii) Qualification test
 - Qualification testing consists of mechanical, electrical, and environmental inspections, and is intended to verify that materials, design, performance, and long-term reliability of the part are consistent with the specification and intended application, and to assure that manufacturer processes are consistent from lot to lot
 - Qualification test shall be performed on samples from screened parts
 - Qualification guidelines are described in generic and detail specifications for each part type.

iii) Lot Acceptance test

- The purpose of the Lot Acceptance test is to evaluate lot conformity
- Test consists of electrical, mechanical, and environmental inspections
- Lot Acceptance test shall be performed on samples from screened parts per each procured lot
- Lot Acceptance test requirements shall be defined in the detail specification with level of evaluation tests and conditions depending on the application quality requirement
- High level test conditions are to ensure that no wear-out mechanisms would cause premature failures during the part storage, ground phase integration period, and spacecraft mission.
- LAT/QCI sample shall not be used as flight part

- iv) DPA
 - The purpose of DPA test is to determine whether the lot has any design, material, workmanship, or process flaws that may not show up during screening and qualification tests and cause degradation or failures during the hardware integration period and spacecraft mission lifetime.
 - DPA shall be performed on samples from each lot
 - General DPA test items are as follows
 - External visual examination
 - Hermeticity testRadiographic inspection
 - PIND
 - Internal visual examination (Optical magnification inspection)
 - Bond pull test
 - SEM
 - Die shear
 - Reference document is MIL-STD-1580 for each type of part
- v) Re-life
 - Due to latent failure modes are progressed, part whose date code over 7 years from installation shall be re-evaluated by re-life test
 - Parts whose date code over 10 years shall not be used as space flight part
 - Re-life test procedure (spec.) shall be defined in separate document
- vi) Radiation Verification Test (RVT)
 - Any active devices intended to be applied in satellite equipment shall be reviewed on its radiation characteristics.
 - RVT test shall follow standard test procedure. There are two standards procedure, one is from ESCC spec. and the other is from US Military spec.
 - Total Ionizing Dose (TID) test procedure
 - A. ESCC no. 22900, TOTAL DOSE STEADY-STATE IRRADIATION TEST METHOD
 - B. MIL-STD-883, Method 1019.9, Ionizing Radiation (Total Dose) Test Procedure

■ Single Event Effects (SEE) test procedure

A. ESCC no. 25100, SINGLE EVENT EFFECTS TEST METHOD AND GUIDELINES

9. Application of Test Flow

- Overall verification items that shall be applied for each EEE part shall be specified in the verification order sheet
- Following verification guidelines can be applied depending on the part quality s t a t u s
 - i) Commercial parts
 - Screening Test + Lot Qualification Test + DPA + PIND & Radiography (when applicable) + RVT (for active parts)
 - Level of Screening & Qualification shall be specified in order sheet
 - Commercial parts need to be qualified on lot to lot base for space application
 - ii) Manufacturer's High Reliability (Hi-Rel) parts which include qualified heritage
 - Screening Test + Lot Acceptance Test + DPA + PIND & Radiography (when not included) + RVT (if necessary)
 - Level of Screening & Lot Acceptance Test shall be specified in order sheet
 - iii) Standard numbered parts from ESCC, NASA or US Military specifications
 - In case equal or exceed of intended quality level
 - DPA (optional depending on the criticality) + PIND & Radiography (when not included) + RTV (if necessary)
 - In case below of intended quality level
 - Up-screening + Lot Acceptance Test + DPA (optional depending on the criticality) + PIND & Radiography (when not included) + RTV (if necessary)
 - iv) PIND test is mandatory inspection for all hermetic packaged parts which have internal cavity. It shall be performed on 100% samples
 - v) Radiation characteristics shall be evaluated for each active parts, especially for microcircuit devices.

10. Applicable Quality Level

Level 1

i)This quality level is intended for highest reliability and lowest level of risk

Level 2

i)This quality level has moderate risk level balanced by cost constraints and mission objectives

Level 3

i)This quality level has high risk and unknown risk for space applications

11. Part Number and Marking

 All parts tested according to this specification system shall be Identified with unique number or symbol

12. Nonconformance

- Any failure during the test shall be recorded and isolated from the test lot
- Failed part shall be identified with unique mark

II. Generic EEE Parts Verification Test Specification

1. Scope

This generic specification specifies general verification requirements for each part types. Specific requirements and any deviation from this document shall be described in detail specification (or SCD (Source Control Drawing))

2. Applicable Documents

- EEE Parts Verification Specification for Domestic Space
- MIL- STD-883 Test Method Standard, Microcircuits
- MIL- STD-750 Test Methods for Semiconductor Devices
- MIL-STD-202 Test Method Standard, Electronic and Electrical Component Parts
- MIL-STD-1580 Test Method Standard, Destructive Physical Analysis for EEE Parts
- EEE-INST-002 Instructions for EEE Parts Selection, Screening, Qualification, and Derating
- ECSS-Q-ST-60-05, Generic Procurement Requirements for Hybrid

3. Order of Precedence

- In the event of a conflict between the text of this specification and the applicable specifications, the following order of precedence shall apply:
 - i) Detail specification
 - ii) Generic specification
 - iii) Applicable documents of this specification

4. Categories of EEE part

- Part type covered in this document categorized as following
 - Generic part type: General type of part which contains various detail type of p a r t
 - ii) Detail part type: Detail part type General part type can be categorized to with functional, material, packaging

Summary

5. Applicable Quality Level

- i) This quality level is intended for highest reliability and lowest level of risk
- Level 2
 - i) This quality level has moderate risk level balanced by cost constraints and mission objectives
- Level 3

i)This quality level has high risk and unknown risk for space applications

6. Part Number and Marking

Generic Specification

All parts tested according to this specification system shall be Identified with unique number or symbol

7. Nonconformance

- Any failure during the test shall be recorded and isolated from the test lot
- Failed part shall be identified with unique mark

8. Whisker Control

Pure tin finish is not permitted as is due to whisker problems. Terminal lead material shall be checked before verification testing.

9.List of Generic Specification

■ List of generic specification for each part type is as follows

No.	Item
2	Hybrid
3	Heaters
4	Magnetics
5	Microcircuits, Monolithic
6	Microcircuits, PEM
7	Discrete Semiconductor Devices
8	Capacitors
9	Crystal
10	Crystal Oscillators
11	Relays
12	Resistors
13	Filters
14	Fuses
15	Thermistors
16	Wire and Cable

2: HYBRID MICROCIRCUITS

Scope

This Section covers verification of hermetically sealed hybrid microcircuits, multi-chip modules (MCMs), and similar devices as defined in MIL-PRF-38534, General Specification for Hybrid Microcircuits, and ECSS-Q-ST-60-05, Generic Procurement Requirements for Hybrid.

For Plastic encapsulated hybrids, refer to PEM Section.

The hybrids shall be verified for required class or grade level in accordance with Table for space application

Table 1 lists screening and qualification testing required for each part designation when applied to various program classes or grade levels. Additional testing may be required depending on vendor reliability history and problems/failures experienced in previous space programs.

The various hybrid classes are defined below:

- 1) Class K from MIL-PRF-38534 and Level 1 & 2 from ECSS-Q-ST-60-05 is the highest reliability and verification level provided from the standard specification.
- 2) Class H is the standard military quality level in the MIL-PRF-38534 specification.
- 3) Non-QML indicates a hybrid microcircuit device that is not listed in the QML-38534 or ESCC QPL/QML document.

Application

The requirements within this section are generally categorized in quality level. Detail specification for each device can supplement it to meet the specific application requirements

Table 1. HYBRID MICROCIRCUIT REQUIREMENTS 1/

Part Designation	Use As Is	Screen in Accordance with Table 2	Qualify in Accordance with Table 3	Element Evaluation in Accordance with Table 4
Level 1: 1)ECSS Level 1 2)Class K 3)Class H 4)Non-QML 3/,4/	O 2/	0 0 0	0	0
Level 2: 1)ECSS Level 1 & 2 2)Class K 3)Class H 4)Non-QML 4/	O 2/	0 0 0	0	0
Level 3: 1)ECSS Level 1 & 2 2)Class K 3)Class H 4)Non-QML 4/	0 2/ 0	0 0		

Notes:

- 1/ Plastic encapsulated hybrid microcircuits are not covered in this section. Refer to Section for PEMs (Plastic Encapsulated Microcircuits) requirements.
- 2/ Document of ECSS-Q-ST-60-05, Generic Procurement Requirements for Hybrid, includes Screening and Lot Acceptance requirements that can be applied as is.
- 3/ Non-QML hybrid microcircuits are not recommended for use in level 1 applications, and a SCD/ Detail specification is required if a Class K, H, or EPPL part is not available. SCD/Detail specification shall meet all requirements as specified in Tables 2 and 3.
- 4/ Non-QML hybrid microcircuits for level 2 and level 3 shall be procured using a user-controlled procurement specification or source control drawing. The procurement specification or SCD shall meet all requirements of Tables 2 and 3.

Table 2. SCREENING REQUIREMENTS FOR HYBRID MICROCIRCUITS (Page 1 of 2)

			Level 1			Level 2				Level 3	
Screen	Test Methods and Conditions	ECSS 6/	К	Н	Non- QML	ESCC 6/	К	Н	Non- QML	Н	Non- QML
1. Preseal Burn-in	MIL-STD-883, Method 1030				0				0		0
2. 100% Nondestructive Bond Pull	MIL-STD-883, Method 2023, 2% PDA				0				0		0
3. Internal Visual 1/	MIL-STD-883, Method 2017				0				0		0
4. Temperature Cycling	MIL-STD-883, Method 1010, Condition C				0				0		0
5. Constant Acceleration	MIL-STD-883, Method 2001, Condition 3,000 g, Y1 direction only				0				0		0
6. Particle Impact Noise Detection (PIND) 2/	MIL-STD-883, Method 2020, Condition A (Class K) or B			0	0			0	0	0	0
7. Preburn-in Electrical Test	As specified				0				0		0
8. Burn-In 3/	Level 1: MIL-STD-883, Method 1015, 320 hours at 125 °C minimum Levels 2 & 3: MIL-STD-883, Method 1015, 168 hours at 125 °C minimum				0				0		0
9. Final Electrical Test 4/	As specified				0				0		0
10. Calculate Delta and Percent Defective	Level 1: 2 percent PDA Level 2 10 percent PDA Level 3: 10 percent PDA				0				0		0
11. Seal Fine Gross	MIL-STD-883, Method 1014, Conditions A or B, MIL-STD- 883, Method 1014, Condition C				0				0		0

Table 2. SCREENING REQUIREMENTS FOR HYBRID MICROCIRCUITS (Page 2 of 2)

		Level 1			Level 2			Level 3			
Screen	Test Methods and Conditions	ECSS			Non-QML	ESCC			Non-QML	Н	Non-
		6/				6/					QML
12. Radiographic 5/	MIL-STD-883, Method 2012			0	0			0	0	0	0
13. External Visual 1/	MIL-STD-883, Method 2009				0				0	0	0
14. Destructive Physical Analysis (DPA)	MIL-STD-883, Method 5009	0	0	0	0	0	0	0	0	0	0

Notes:

- 1/ Pure tin plating is prohibited as a final finish in EEE components
- 2/ The lot may be accepted on any of the five runs if the percentage of defective devices is less than 1 percent or one device, whichever is greater. All defective devices shall be removed after each run. Lots that do not meet the 1 percent PDA on the fifth run, or exceed 25 percent defectives cumulative, shall be rejected for use as level 1 and level 2 devices.
- 3/ For level 1 hybrids, the burn-in shall be equally divided into two successive burn-ins i.e. 160 hours pre seal and 160 hours post seal. If pre seal burn-in cannot be applied, 240hours post seal burn-in can be applied as an alternative. If another temperature need to be selected, the burn-induration shall be adjusted in conformance withMIL-STD-883method 1015.
- 4/ Interim electrical tests shall be performed after the first burn-in to determine acceptable devices for the second burn-in.
- 5/ X-ray may be performed at any step in the sequence after PIND test.
- 6/ ECSS-Q-ST-60-05, Generic Procurement Requirements for Hybrid, level 1 and 2 can be applied as is for respective quality level.

Table 3. QUALIFICATION TEST REQUIREMENTS FOR HYBRID MICROCIRCUITS

Incraction/Text	Test Methods and Conditions	Level 1 Non-	Level 2	Quantity
		QIVIL		(Accept Number)
Group 1				
Physical Dimensions 1/	MIL-STD-883, Method 2016	0	0	2 (0)
Solderability	MIL-STD-883, Method 2003, soldering temperature 245 °C ±	0	0	2 (0)
	5 °C			
Resistance to Solvents	MIL-STD-883, Method 2015	0	0	3 (0)
Group 2				10 (0)
External Visual	MIL-STD-883, Method 2009	0	0	
PIND	MIL-STD-883, Method 2020, A or B 2/	0	0	
Temperature Cycling	MIL-STD-883, Method 1010, C, 100 cycles	0	0	
Mechanical Shock and	MIL-STD-883, Method 2002, B, Y1 direction	0	0	
Constant Acceleration	MIL-STD-883, Method 2001, 5,000 gs, Y1 direction	0	0	
Seal (Fine and Gross)	MIL-STD-883, Method 1014	0	0	
PIND	MIL-STD-883, Method 2020, A or B	0	0	
Visual Examination	MIL-STD-883, Method 1010	0	0	
End-Point Electrical	Per device specification	0	0	
Group 3				
Steady-State Life	MIL-STD-883, Method 1005, 1,000 hours at 125 °C or equivalent	0	0	
	in accordance with 1005			22 (0)
End-Point Electrical	Per device specification	0	0	
Group 4				
Internal Water Vapor Content	MIL-STD-883, Method 1018 at 100 °C	0	0	3 (0)
				. ,

Notes:

1/ In case of failure, 100 percent inspection for physical dimensions shall be performed.

2/ Option.

Table 4A. ACTIVE ELEMENT EVALUATION REQUIREMENTS 1/

		Level 1	Level 2	Quantity
Inspection/Test	Test Methods and Conditions	Non-QML	Non-QML	(Accept Number)
Group 1		_	_	
Element Electrical	Group A Tests at 25 °C	0	0	100 percent
Group 2				
Element Visual	MIL-STD-883, Method 2010	0	0	100 percent
	MIL-STD-750, Method 2072			
	MIL-STD-750, Method 2073			
Group 3				10 (0)
Internal Visual	MIL-STD-883, Method 2010	0	0	
	MIL-STD-750, Method 2072			
	MIL-STD-750, Method 2073			
Group 4				10 (0)
Temperature Cycling	MIL-STD-883, Method 1010, Condition C	0		
Mechanical Shock or	MIL-STD-883, Method 2002, B, Y1 direction	0		
Constant Acceleration	MIL-STD-883, Method 2001, 3,000 gs, Y1 direction	0		
Interim Electrical				
Burn-In	MIL-STD-883, Method 1015, 240 hours min. at	0		
	125 °C			
Post Burn-In Electrical 2/				
Steady State Life	MIL-STD-883, Method 1005	0		
Final Electrical 2/		0		
Group 5				10 (0) or 20 (1)
Wire Bond Evaluation	MIL-STD-883, Method 2011	0	0	wire
Group 5				See method 2018
SEM Inspection	MIL-STD-883, Method 2018	0		

Notes:

1/ These requirements apply to all non-QML hybrids procured for level 1 and 2 applications.

2/ Post burn-in and final electrical tests shall consist of static tests (including functional tests) at 25°C, minimum, and Maximum operating temperatures.

Table 4B. PASSIVE ELEMENT EVALUATION REQUIREMENTS 1/

		Level 1	Level 2	Quantity
Inspection/Test	Test Methods and Conditions	Non-QML	Non-QML	(Accept Number)
Group 1				
Element Electrical 2/	Group A Tests at 25 °C	0	0	100 percent
Group 2				100 percent
Visual Inspection	MIL-STD-883, Method 2032	0	0	22 (0)
Group 3				10 (0)
Temperature Cycling	MIL-STD-883, Method 1010, Condition C	0		
Mechanical Shock or	MIL-STD-883, Method 2002, B, Y1 direction	0		
Constant Acceleration	MIL-STD-883, Method 2001, 3,000, Y1 direction	0		
Voltage Conditioning or	As specified	0		
Aging (Capacitors)				
Visual Inspection	MIL-STD-883, Method 2017			
Electrical 2/				
Group 4		0	0	10 (0) or 20 (1)
Wire Bond Evaluation	MIL-STD-883, Method 2011			wires

Notes:

1/ These requirements apply to all non-QML hybrids procured through SCDs for level 1 and 2 applications.

2/ Test at 25°C for the following electrical characteristics (minimum):

a) Resistors: DC resistance

b) Capacitors: 1) Ceramic: Dielectric withstanding voltage, insulation resistance, capacitance and dissipation factor.
2) Tantalum: DC leakage current, capacitance, and dissipation factor.

3) Metal Insulation Semiconductor: DC leakage current, capacitance, and dielectric withstanding voltage.

c) Inductors: DC resistance, inductance, and quality factor

Table 4C. SAW (Surface Acoustic Wave) ELEMENT EVALUATION REQUIREMENTS 1/

Inspection/Test	Test Methods and Conditions	Level 1 Non-QML	Level 2 Non-QML	Quantity (Accept Number)
Group 1 RF Electrical Probe	25 °C, as specified	0	0	100 percent
Group 2 Visual Inspection	MIL-STD-883, Method 2032	0	0	100 percent
Group 3 Wire Bond Evaluation	MIL-STD-883, Method 2011	0	0	10 (0) or 20 (1) wires

Notes:

1/ These requirements apply to all non-QML hybrids procured through SCDs for level 1 and 2 applications.

Inspection/Test	Test Methods and Conditions	Level 1 Non-QML	Level 2 Non-QML	Quantity (Accept Number)
Group 1				
Element Electrical	25 °C , as specified	0	0	100 percent
Group 2				
Visual Inspection	MIL-STD-883, Method 2032	0	0	100 percent
Group 3				5 (0)
Physical Dimensions	MIL-STD-883, Method 2016	0	0	
Visual Inspection	MIL-STD-883, Method 2032	0	0	
Electrical 2/	25 °C	0	0	
Group 4				3 (0)
Conductor Thickness or	As specified	0	0	
Conductor Resistivity				
Film Adhesion Test	MIL-STD-977, Method 4500	0	0	
Solderability	Solderable substrates only	0	0	
Group 5				
TCR	MIL-STD-202, Method 304	0	0	2 (0)
Wire Bond Evaluation	MIL-STD-883, Method 2011	0	0	10 (0) or 20 (1)
				wires
Die Shear Evaluation	MIL-STD-883, Method 2019	0	0	2 (0)

Table 4D. SUBSTRATE EVALUATION REQUIREMENTS 1/

Notes:

1/ These requirements apply to all non-QML hybrids procured through SCDs for level 1 and 2 applications.

2/ Test for the following characteristics and as specified in procurement specification:a) Resistors: DC resistance.

b) Capacitors: Capacitance and, if specified, dielectric withstanding voltage, insulation resistance, and dissipation factor.

c) Multilayered Substrates: Continuity and isolation as specified.

Table 4E. PACKAGE EVALUATION REQUIREMENTS 1/, 2/

Inspection/Test	Test Methods and Conditions	Level 1 Non-QML	Level 2 Non-QML	Quantity (Accept Number)
Group 1				2 (0)
Physical Dimensions	MIL-STD-883, Method 2016	0	0	3 (0)
Group 2				
Solderability	MIL-STD-883, Method 2003, soldering temperature 245 °C \pm	0	0	3 (0)
	5°C			
Group 3		0	0	
Thermal Shock	MIL-STD-883, Method 1011, Condition C, 20 cycles MIL-STD-			
High Temperature Bake	883, Method 1008, 1 hour at 150 °C			
Lead Integrity	MIL-STD-883, Method 2004, B2 (lead fatigue) D (leadless chip carriers) MIL-STD-883, Method 2028, B1 for rigid leads (pin grid array leads)			10 (0) or 20 (1) wires 15 (0) leads
Seal				
a. FineLeak	MIL-STD-883, Method 1014, Conditions A or B			
b. GrossLeak	MIL-STD-883, Method 1014, Conditions C or D			
Group 4		0	0	
Metal Package Isolation	MIL-STD-883, Method 1003, 600V DC 100 nA			3 (0)
	maximum			

Notes:

1/ These requirements apply to all non-QML hybrids procured through SCDs for level 1 and 2 applications.

2/ Generic data is acceptable for all tests listed herein for Level 3 devices

3 : H E A T E R S

Table 1 HEATER REQUIREMENTS

		Screen to Requirements in	Qualify to Requirements in
Procurement Specification 1/	Use As Is	Table 2	Table 3
Level 1			
ESCC 4009	0		
S-311-P-079	0		
SCD		0	0
Level 2			
ESCC 4009	0		
S-311-P-079	О		
SCD		0	0
Commercial		0	0
Level 3	0		
ESCC 4009	0		
S-311-P-079	0		
SCD		0	
Commercial		О	

Notes:

1/ Most heaters for space applications are custom designed for the intended application

Table 2 SCREENING REQUIREMENTS FOR HEATERS

Inspection/Test Test Methods, Conditions and Requirements Reference S-311-P-079	Test Methods, Conditions and Requirements	Level 1	Level 2		Level 3	
	SCD	SCD	Commercial	SCD	Commercial	
1. Voltage Conditioning	<u>S-311-P-079 P</u> ara. 4.7.2	0	0	0	0	0
	Duration (hours)	160	96	96	48	48
2. Thermal Shock	MIL-STD-202, Method 107, Test Condition D with the exception of a high temperature limit of 200°C	0	0	0		
3. Dielectric Withstanding Voltage (DWV)	MIL-STD-202, Method 301 at 500 VRMS applied for 1 minute max. between the element and conductive plates in contact with the outer surface of the heater	0	0	0		
4. Insulation Resistance	MIL-STD-202, Method 302, Test Condition B at 25 °C	0	0	0	0	0
5. DC Resistance	MIL-STD-202, Method 303 at 25 °C measured between heater leads	0	0	0	0	0
6. Visual / Mechanical	S-311-P-079 Para.4.7.1	0	0	0	0	0

	Test Methods and	Quantity (Accept Number)			
Inspection Test 1/	Procedures	Level 1	Level 2	Level 3	
	S-311-P-079 Paragraph	SCD	SCD or Commercial		
Group 1		22(1)	12(1)		
Conditioning	4.7.2	0	0		
DC Resistance	4.7.5	0	0		
Visual and Mechanical	4.7.1	0	0	Not	
Group 2 2/		10(0)	5(0)		
Thermal Shock	4.7.7	0		Required	
Low Temperature Operation	4.7.8	0	0		
DWV	4.7.3	0	0		
Insulation Resistance	4.7.4	0	0		
DC Resistance	4.7.5	0	0		
Lead Pull Strength	4.7.6	0			
Group 3 2/		10(0)	5(0)		
Life	4.7.9	0	0		
Group 4 2/		1 (0)	1 (0)	1 (0)	
Thermal Vacuum Outgassing	4.7.10	0	0	0	

Table 3 QUALIFICATION TEST REQUIREMENTS FOR HEATERS

Notes:

- 1/ Any test that has been performed during screening on the samples selected for qualification tests need not be repeated.
- 2/ Samples for Groups 2, 3, and 4 should be selected from parts that have passed Group 1 tests.

4 : M A G N E T I C S

Table 1. MAGNETIC PART REQUIREMENTS 1/ (Page 1 of 2)

Part Type	Procurement Specification	Level 1	Level 2	Level 3
	MIL-STD-981	Class S	Class S, B	Class S, B
Custom Magnetic Devices 2/	ESCC 3201	Level B or C	Level B or C	Level B or C
Inductors/Coils				
RF Fixed Coils	MIL-PRF-39010 9/	R 3/	R, P	R, P
RF Fixed and Variable Coils	MIL-PRF-15305 9/	4/	5/	0
RF Fixed and Variable Chip Coils	MIL-PRF-83446 9/	4/	0	0
Inductors, Power, Audio, Charging, and Saturable	MIL-PRF-27 8/ 9/		T, M 7/	T, M 7/
All Coil and Inductor Types	ESCC 3201	0	0	0
All Coil and Inductor Types	SCD 9/	4/	4/	4/
All Coils and Inductor Types	Commercial 9/		4/	4/
Transformers				
RF Fixed and Variable	6/ 9/	4/	4/	4/
Lower Power Pulse	MIL-PRF-21038 8/ 9/	T 4/	Т, М	Т, М
Transformers Power, Audio, Charging, and Saturable	MIL-PRF-27 8/ 9/	T 7/	T, M 7/	T, M 7/
All Transformer Types	ESCC 3201			0
All Transformer Types	SCD 9/	4/	4/	4/
All Transformer Types	Commercial 9/		4/	4/

Notes:

- 1/ The character "O" designates "use as is." Magnetic part groups and families are provided in Table 1A.
- 2/ All magnetic parts processed to the Class S requirements of MIL-STD-981 are acceptable as level 1 parts. Magnetics processed to Class B requirements of MIL-STD-981 are acceptable as level 2 parts. All level 1 and 2 custom magnetics shall be processed to the applicable requirements of MIL-STD-981. In the event, a Class B part is intended for a level 1 application, the additional level test requirements of Tables 2 and 3 are applicable. Magnetic parts processed to the requirements of ESCC 3201 are acceptable as all quality level.
- 3/ MIL-PRF-39010 provides for R and P established reliability failure rate levels (FRL). Both FRL R and P coils require 100% X-ray per MIL-ST-981.

- 4/ Screening in accordance with Table 2 and qualification in accordance with Table 3 are required. Any test required by Tables 2 and 3 that is already performed by the procurement specification (military or SCD) need not be repeated. However, lot specific attributes data for screening tests, and lot specific or generic attributes data as applicable to various test groups of qualification tests must be submitted to show that tests were performed with acceptable results.
- 5/ MIL-PRF-15305 coils shall receive radiographic inspection and burn-in in accordance with MIL-STD-981 for level 2 applications.
- 6/ These parts were formerly available to MIL-T-55631. This specification was declared as inactive for new design.
- 7/ Inductors and transformers can be procured to MIL-PRF-27 detail specification (slash sheets) when they are available, provided they satisfy the requirements of Tables 2 and 3 herein.
- 8/ MIL-PRF-27 and MIL-PRF-21038 have three product levels. Only levels T and M are acceptable for space flight use, subject to the Requirement specified in this table.
- 9/ Parts must be fabricated with wires that meet or exceed the following minimums for magnet wire and terminations/self leads:

Table 1. MAGNETIC PART REQUIREMENTS 1/ (Page 2 of 2)

Part Type	Level 1	Levels 2 and 3
Power Transformers	38 AWG	44 AWG
Power Inductors		
High Power Pulse Transformers		
Charging Inductors		
Saturable Transformers		
Saturable Inductors		
RF Fixed and Variable Transformers RF	44 AWG	50 AWG
Fixed and Variable Coils		
Audio Inductors Audio		
Transformers		
Low Power Pulse Transformers RF		
Fixed and Variable Chip Coils		

Type of Termination	Level 1	Levels 2 and 3	
Interconnected Lead	29 AWG	32 AWG	
External Terminal/Self Lead A/	26 AWG	28 AWG	

A/ Spliced internal lead diameter ratios shall not exceed 5 to 1 for magnet wire sizes larger than #44.
Table 1A. PART TYPE GROUPINGS FOR SCREENING AND QUALIFICATION

Part Types	Applicable Military Specification
Family 1	
Power Transformers	MIL-PRF-27
Power Inductors Audio	MIL-PRF-27
Transformers Audio	MIL-PRF-27
Inductors	MIL-PRF-27
High Power Pulse Transformers	MIL-PRF-27
Charging Inductors	MIL-PRF-27
Saturable Transformers	MIL-PRF-27
Saturable Inductors	MIL-PRF-27
RF Fixed and Variable Transformers Low	1/
Power Pulse Transformers	MIL-PRF-21038
Family 2	
RF Fixed and Variable Coils	MIL-PRF-15305
Family 3	
RF Fixed and Variable Chip Coils	MIL-PRF-83446

Notes:

1/ These parts were formerly available to MIL-T-55631. This specification was declared as inactive for new design.

		Part Family Type per Table 1A									
Inspection/Test	Test Methods and Conditions 1/	F	amily 1		F	amily 2		F	amily 3		
		Level				Level	T	Level			
		1	2	3	1	2	3	1	2	3	
1. External Visual and	As specified in the detailed drawing; at a	0	0	0	0	0	0	0	0	0	
Dimensional Inspection	minimum, shall include material, physical										
	dimensions and configuration, weight, marking,										
	and workmansnip. 2/										
2. Electrical Characteristics											
Insulation Resistance	MIL-STD-202, Method 302. Devices rated at	0	0	0	0	0	0	0	0	0	
	insulation at 100 Vdc. Devices rated at										
	100 Vdc or more, measure at 2.5x the										
	rated voltage or 500 Vdc, whichever is										
	less. Test duration 2 minutes + 30										
	seconds. Insulation resistance 1,000										
	Mohms minimum.										
DC Winding Resistance	Use Kelvin bridge or equivalent for resistances	0	0	0	0	0	0	0	0	0	
	less than 1 ohm. Pre and post										
	thermal shock delta K limit shall be less										
Winding Inductance	Measure at voltage frequency and test	0	0	0	0	0	0	0	0	0	
Winding inductance	current as specified in the device detail	Ŭ	Ŭ		Ŭ	Ŭ		Ŭ	Ŭ	Ŭ	
	drawing. The pre and post thermal shock										
	delta L limit shall be less than 3 percent.										
Turns Ratio or Voltage Ratio	Apply 1 Vrms at a specified frequency to each	0	0	0							
	set of primary windings; monitor										
	voltage across each secondary winding.										
	Ratio not to exceed the specified limit.										
	Use Wayne Kerr or equivalent										
- • •	instrument.										
Polarity	With the respective terminals excited at	0	0	0							
	voltage measured at the output leads shall										
	be in phase with the input or as specified.										

Table 2. MAGNETIC PART SCREENING REQUIREMENTS (Page 1 of 3)

	_			Part Fa	amily Typ	e per Tab	ole 1A			
have a first the state	Test Matheda and One different 4/	F	amily 1		F	amily 2		F	amily 3	
Inspection/Test	Test Methods and Conditions 1/		Level		Level			Level		
		1	2	3	1	2	3	1	2	3
3. Thermal Shock	MIL-STD-202, Method 107.									
25 Cycles	Continually monitor during final	0			0	0		0	0	
10 Cycles	cycle to verify no intermittent		0				0			0
5 Cycles	conditions. 3/			0						
4. Vibration	MIL-STD-202, Method 204. Test	0			0					
	Condition as specified in the detail									
	drawing.									
5. Burn-In	MIL-STD-981, App. B, Paragraph									
	30.1.2 for Family 1.	0	0							
	For Transformers > 0.8 watts output 96									
	hours at maximum rated temperature at									
	rated input voltage and current at minimum									
	rated frequency and at maximum rated									
	load.									
	For Transformers < 0.8 watts output 96									
	hours at maximum rated temperature at									
	rated input voltage and current at minimum									
	rated frequency with no load.									
	For Inductors									
	96 hours at maximum operating									
	temperature.									
	30.3.2 for Family 2.									
	96 hours at maximum rated operating				0	0				
	temperature.									
	30.5.2 for Family 3.									
	96 hours at maximum rated operating							0	0	
	temperature.									

Table 2. MAGNETICS SCREENING REQUIREMENTS (Page 2 of 3)

				Part Fa	amily Type per Table 1A					
		F	Family 1			amily 2		F	amily 3	
Inspection/Test	Test Methods and Conditions 1/		Level			Level		Level		
		1	2	3	1	2	3	1	2	3
6. Seal (If Applicable)	MIL-PRF-27 paragraph 4.7.8	0	0							
7. D W V	MIL-STD-202, Methods 301 and 105 4/	0	0	0	0	0	0	0	0	0
8. Q	As specified				0	0		0	0	
9. Induced Voltage (Transformers With Greater Than 25 Volts per Winding)	MIL-PRF-27 paragraph 4.7.10. 2x rated voltage 5/	0	0	0						
10. Self Resonant Frequency	As specified 6/				0	0		0	0	
11. Electrical Characteristics	As specified	0	0	0	0	0	0	0	0	0
12. Radiographic	MIL-STD-981 Appendix C	0			0			0		
13. Visual	As specified	0	0	0	0	0	0	0	0	0
14. Lot Rejection Criteria	5% or 1 device, whichever is greater 7/	0	0	0	0	0	0	0	0	0

Table 2 MAGNETICS SCREENING REQUIREMENTS (Page 3 of 3)

Notes:

- 1/ Users should refer to the nearest equivalent military or ESCC specification listed in Table 1 if required for better definition of testing requirements.
- 2/ Perform inspection using a microscope with 10x minimum magnification.
- 3/ For level 1 parts with magnet wire less than 30 AWG, measure DC resistance before and after each cycle.
- 4/ Dielectric withstanding voltage shall be measured at sea level and at high altitude. Test voltage and conditions shall be specified.
- 5/ For saturating core, applied voltage shall be two times rated peak to peak voltage at two times rated frequency. For pulse transformers, the applied voltage shall be as specified in Table XIV of MIL-PRF-27.
- 6/ Use a Q meter, impedance analyzer, network analyzer, or equivalent.
- 7/ For Levels 2 and 3, a rejected lot may be reworked to correct the defects, or screen out the defective units, and be resubmitted for re-inspection. Such lots shall be separate from new lots and shall be clearly identified as re-inspected lots. Rework of level 1 lots shall not be permitted unless approved.

		Pa	art Family 1		Pa	art Family 2		Part Family 3			
Inspection/	Test Methods		Level			Level			Level		
Test 2/	and Conditions	1	2	3	1	2	3	1	2	3	
Subgroup I		6 (0)	6 (0)		6 (0)	6 (0)		6 (0)	6 (0)		
Operating Torque (when	In accordance with MIL-PRF-15305,				0	0		0	0		
Applicable)	paragraph 4.8.7 or MIL-PRF- <u>83446,</u>										
	paragraph 4.6.8.										
Temperature Rise	For Group 1, in accordance with	0	0		0	0		0	0		
	paragraph 4.7.13 of MIL-PRF-27.										
	For Group 2, in accordance withparagraph										
	4.8.9 of MIL-PRF-15305.										
	For Group 3, in accordance withparagraph										
	4.6.12 of MIL-PRF-83446.										
Overload	Perform test in accordance with: MIL- PRF-	0	0		0	0		0	0		
	27, paragraph 4.7.21, MIL-PRF-										
	83446, paragraph 4.6.13, or MIL-PRF-										
	15305, paragraph 4.8.10.										
Resistance to Soldering	Perform in accordance with: MIL-PRF- 27,	0			0						
Heat	paragraph 4.7.6, MIL-PRF-21038,										
	paragraph 4.7.6, MIL-T-55631, paragraph										
	4.7.13, or MIL-PRF-15305, paragraph4.8.11.										
Terminal Strength	Finished devices with solid wire terminals shall	0	0		0	0					
	be capable of passing the terminal twist test in										
	accordance with MIL-STD- 202, Method 211,										
	Test Condition D, without causing discontinuity										
	in the winding. When the bending of the										
	terminal leads, as specified in MIL-STD- 202, is										
	impractical, the device shall be held stationary.										
	The lead shall be clamped in a hand chuck and										
	the chuck rotated as required. During the twist										
	test, the winding shall be monitored for open										
	circuit of 100 microseconds or longer duration.										
			1	1	1		1	1		1	

Table 3 MAGNETIC PART QUALIFICATION REQUIREMENTS (Page 1 of 4) 1/

		Part Family 1			Ра	rt Family 2		Part family 3		
Inspection/	Test Methods		Level			Level			Level	
Test 2/	and Conditions	1	2	3	1	2	3	1	2	3
Induced Voltage 3/	MIL-PRF-27, paragraph 4.7.10, 2x rated voltage.	0	0							
Vibration	Perform test in accordance with: MIL-S <u>TD-</u> <u>202</u> , Method 204, specify the test condition, <u>MIL-PRF-15305</u> , paragraph 4.8.15, or MIL- <u>PRF-21038</u> , paragraph 4.7.10.	0	0		0	0				
Shock	For MIL-PRF-27 and MIL-PRF-21038 part types, test in accordance with MIL- STD- 202, Method 213, pulse as specified (H or I). For MIL-PRF-15305, paragraph 4.8.16, Test Condition I.	0	0		0	0				
Dielectric Withstanding Voltage At Reduced Pressure	MIL-STD-202, Method 105. Leakage current shall be as specified in thedetailed part drawing.	0	0		0	0		0	0	
Insulation Resistance	MIL-STD-202, Method 302. Devices rated at 28 Vdc or less, measure insulation at 100 Vdc. Devices rated at 100 Vdc or more, measure at 2.5x the rated voltage or 500 Vdc, whichever is less. Test duration 2 minutes +30 seconds. Insulation resistance 1,000 Mohms minimum.	0	0		0	0		0	0	
Electrical CharacteristicsDC Winding Resistance Winding Inductance	Use Kelvin bridge or equivalent for resistances less than 1 ohm. Measure inductance at voltage, frequency, and current as specified in the device detail drawing.	0	0		0	Ο		Ο	Ο	

Table 3. MAGNETIC PART QUALIFICATION REQUIREMENTS (Page 2 of 4) 1/

		Part Family1			Pa	rt Family 2		Part Family 3		
Inspection/	Test Methods		Level			Level			Level	
Test 2/	and Conditions	1	2	3	1	2	3	1	2	3
Visual and Mechanical	As specified in the detailed drawing. At a	0	0		0	0		0	0	
Examination (External)	minimum shall include materials, physical									
	dimensions and configuration, weight,									
	marking, and workmanship.									
Subgroup II		6 (0)	6 (0)		6 (0)	6 (0)		6 (0)	6 (0)	
Life	Transformers shall be subjected to five life	0	0		0	0		0	0	
	cycles a week for a minimum of 12 weeks,									
	i.e., a total of 2,016 hours. Four of these									
	cycles shall consist of a 20 hour period									
	during which the transformers are operated									
	at a temperature of 85 degrees Celsius with									
	electrical conditions as specified in the detail									
	drawing or specification and a 4 hour period									
	of operation at room ambient temperature									
	without excitation. The fifth cycle of the week									
	shall be a 68 hour period at a temperature of									
	85 degrees Celsius and a 4 hour period of									
	excitation at room ambient temperature. An									
	electrical test circuit shall be devised so that									
	an open circuit or short circuit during this life									
	cycle test shall be detected and the time of									
	failure recorded. Upon completion of the life									
	test, transformers shall be tested for									
	insulation resistance and dielectric									
	withstanding voltage (at reduced voltage).									
	Sample also shall be examined for physical									
	and electrical damage. The procuring activity									
	shall be notified within 48 hours of any									
	failures.									

Table 3. MAGNETIC PART QUALIFICATION REQUIREMENTS (Page 3 of 4) 1/

		Test Quantity (Accept Number)									
Inspection/	Test Methods	Pa	art Family 1		Pa	rt Family 2	,	Pa	rt Family 3		
Test 2/	and Conditions		Level			Level			Level		
		1	2	3	1	2	3	1	2	3	
Life (Continued)	Catastrophic failures (electrical failures,	0	0		0	0		0	0		
	physical damage) shall be subjected to										
	failure analysis to determine the cause of										
	failure. ForMIL-PRF-83446types the test										
	shall be conducted in accordance with										
	paragraph 4.6.9 and MIL- <u>STD-202, Meth</u> od										
	108. ForMIL-PRF-15305types the test										
	shall be performed in accordance with										
	paragraph 4.8.13 MIL-STD-202, Method										
	108.										
Electrical Characteristics		0	0		0	0		0	0		
DC Winding Resistance	Use Kelvin bridge or equivalent for										
	resistances less than 1 ohm.										
Winding Inductance	Measure inductance at voltage, frequency,										
	and current as specified in the device detail										
	drawing.										
Visual and Mechanical	As specified in the detail drawing. At a	0	0		0	0		0	0		
Examination (External)	minimum shall include materials, physical										
	dimensions and configuration, weight,										
	marking, and workmanship.										
Radiographic	MIL-STD-981, Appendix C.	0	0		0	0		0	0		
Two units for Groups 1, 2, and											
Radiographic	MIL-STD-981, Appendix C.	0	0		0	0		0	0		
Two units for Groups 1, 2, and											
Subgroup III		0	0	0	0	0	0	0	0	0	
Thermal Outgassing 4/	A <u>STME 595</u>										
	TML = 1.0% maximum										
	CVCM = 0.10% maximum										

Table 3. MAGNETIC PART QUALIFICATION REQUIREMENTS (Page 4 of 4) 1/

Notes:

- 1/ All sample units submitted for qualification testing must have successfully completed screening to the requirements of Table 2.
- 2/ For test methods, conditions, and requirements, refer to MIL-STD-981 or ESCC 3201.
- 3/ Required only when any winding has a rated voltage in excess of 25 volts RMS.
- 4/ Materials listed in NASA Reference Publication 1124 that meet TML and CVCM limits are acceptable for use without further testing.

5: INTEGRATED CIRCUITS (MONOLITHIC)

Scope

This section covers hermetically sealed Monolithic Integrated Circuits only. For Plastic Encapsulated Microcircuits(PEMs), refer to Section PEM. Monolithic Integrated Circuits shall be selected for the applicable program class or grade level in accordance with Table 1. Table 1 also indicates screening and qualification testing required for each part designation when applied to the various program classes or grade levels. The part designations are discussed below:

- (1) ESCC 9000. This designation includes ESCC certified and qualified parts by ESCC 9000 specification. This specification defines the general requirements for microcircuit devices which intended for space application.
- (2) Class V, Q, S, and B. These designations include parts that are procured as "Class V," "Class Q," "Class S," or "Class B" as defined in MIL-PRF-38535; are tested to MIL-PRF- 38535 Tables Ia, II, III, IV, and V, as well as Appendixes A (and B, if applicable); and are listed in Part I or Part II of QML-38535.
- (3) MIL-STD-883 Compliant or Class M. This designation includes parts that are procured as compliant to Paragraph 1.2.1 of MIL-STD-883. The parts may be manufacturer's "Hi-Rel" flow processed parts marked with "/883" or otherwise claim compliance to Paragraph 1.2.1 of MIL-STD-883, or parts procured to DSSC drawings that specify "Non-JAN" MIL-STD- 883 compliant parts, or parts procured to Standard Military Drawings (SMD) quality level "M." These parts require that all provisions of Appendix A of MIL-PRF-38535 shall be met by the part manufacturer.
- (4) Source Control Drawing (SCD). This designation includes parts that are not available to other acceptable procurement methods listed for a specific grade level, and must be procured to a user's controlled specification (SCD). The SCD shall include screening and qualification requirements as specified in Tables 2 and 3 herein.

5. INTEGRATED CIRCUITS (MONOLITHIC) Page 43

- (5) Manufacturer High Reliability (Mfr. Hi-Rel). This designation includes parts that are available only to a manufacturer's controlled test program as described in the manufacturer's catalog. These parts are controlled only by the manufacturer, who assigns them a special part number and provides a certificate of compliance that they have been tested as advertised. This category includes Non-Compliant, Non-JAN parts.
- (6) Commercial Parts. This designation includes parts that are either hermetic, commercial-off- the-shelf (COTS), or non-hermetic Plastic Encapsulated Microcircuits (PEMs). Hermetic COTS are available only to a manufacturer's specification datasheet and are controlled by a test program as described in the manufacturer's catalog. It is the responsibility of the user to assure that the parts meet or exceed the testing requirements in Tables 2 and 3 herein.

Commercial parts are not approved for Program level 1 applications. Non-hermetic PEMs requirements are covered in Section M3.

- (7) Application-Specific Integrated Circuits (ASIC), Highly Complex System-on-Chip (SOC), Semi-Custom, and Masked Gate Arrays. These devices shall meet the requirements of Tables 2, 3, and 4 herein and the following:
 - a. For ASICs, additional requirements shall include means of verification of design, simulation, debugging, layout and timing, test pattern generation, and calculation of fault coverages. All ASICs for Program level 1 and level 2 applications require SCDs.
 - b. SOC, Semi-Custom, and Masked Gate Array designs that combine multiple technologies, such as analog, digital, and/or RF, as well as intellectual property (IP) cores from outside sources, shall require SCDs.

Table 1. MONOLITHIC INTEGRATED CIRCUIT REQUIREMENTS (Page 1 of 2) 1/

Part Designation	Use As Is	Screen To Requirements in Table 2 2/	Qualify To Requirements in Table 3 2/
Level 1:			
1) ESCC 9000	0		
2) Class V or Class S	0		
3) Class Q or Class B		O 3/, 4/	
4) SCD		O 3/, 4/	0
5) 883-Compliant or Class M		O 3/, 4/	0
Level 2:			
1) ESCC 9000	0		
2) Class V or Class S	0		
3) Class Q or Class B		O 3/	
4) 883-Compliant or Class M		O 3/	0
5) SCD		O 3/	0
6) Mfr. Hi-Rel 5/		O 3/	0
7) Commercial		O 3/	0
Level 3:			
1) ESCC 9000	0		
2) Class V (or S)	0		
3) Class Q (or B)		O 3/	
4) 883-Compliant or Class M		O 3/	
5) SCD		O 3/	
6) Mfr. Hi-Rel 6/		O 3/	
7) Commercial 6/		O 3/	

Table 1. MONOLITHIC INTEGRATED CIRCUIT REQUIREMENTS (Page 2 of 2)1/

Notes:

- 1/ Plastic Encapsulated Microcircuits (PEMs) are not covered in this section. Refer to Section PEM requirements.
- 2/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (military or SCD) need not be repeated.
- 3/ All microcircuits with a housing cavity (except ESCC, Class V and Class S) require PIND in accordance with MIL-STD-883, Method 2020, condition A.
- 4/ Class Q or Class B and Compliant Non-JAN microcircuits used in level 1 applications require DPA. DPA is required in any level depending on the criticality in application
- 5/ Use of Mfr. Hi-Rel and commercial parts in level 1 and 2 applications requires use of SCD/Detail specification that specifies screening and qualification testing.
- 6/ Level 3 applications parts shall require screening to Table 2. No qualification testing per Table 3 is mandatory; however, it is strongly recommended that all non-QPL/QML devices have life test in accordance with MIL-STD-883, Method 1005, conditions A-D (as appropriate for device type), for 1,000 hours at 125°C(or equivalent time/temperature per Method 1005, Table 1).

Table 2. SCREENING REQUIREMENTS FOR MONOLITHIC INTEGRATED CIRCUITS (Page 1 of 2)

		MIL-S	STD-883		Level 1		Level 2			Level 3		
				Class Q		883 or	Class Q	883 or	SCD/Mfr.Hi-Rel	Class Q	883 or	SCD/Mfr.Hi-Rel
	Inspection/Test	Methods	Conditions	or B	SCD	Class M 1/	or B	Class M 1/	/Commercial 1/	or B	Class M	/Commercial 1/
1.	Wafer Lot Acceptance	5007			0	0		0	0			
2.	Nondestructive Bond full	2023			0							
3.	Internal Visual	2010	A or B	0	0	0		0	0			0
4.	Temperature Cycling	1010	С		0	0		0	0			
5.	Constant Acceleration	2001	E		0	0		0	0			
			Y1									
			Orientation									
			Only									
6.	PIND 2/	2020	А	0	0	0	0	0	0	0	0	0
7.	Radiographic 3/	2012	Two views		0	0						
8.	Serialization				0							
9.	Initial Electrical		Per Table 2A	0	0	0		0	0			0
	Measurements		herein and	Read/	Read/	Read/		Read/	Read/			
	@ 25°C4/ , 5/		applicable	Record	Record	Record		Record	Record			
			device									
			specification									
10.	Burn-in 6/, 7/, 8 /	1015	A, C, or D	0	0	0		0	0			0
			duration (hrs.)	48/160	72/240	48/160		160	160			160
			. ,									
11.	Final Electrical		Per Table 2A	0	0	0		0	0			0
	Measurements @ 25		herein and	Read/	Read/	Read/		Read/	Read/			
	°C, min. and max.		applicable	Record	Record	Record		Record	Record			
	Operating Temp. 6/,		device									
	9/		specification						-			
12.	Calculate Delta		Per Table 2A	0	0	0		0	0			
	6/		herein and									
			applicable									
			device									
			specification									

13. Calculate PDA 10/		PDA	5%	5%	5%	10%	10%		20%
14. Hermetic Seal	1014								
a. FineLeak		A or B	0	0	0	0	0		
b. GrossLeak		С	0	0	0	0	0		
15. External Visual 11/	2009	3 to 10x	0	0	0	0	0		0

Table 2. SCREENING REQUIREMENTS FOR MONOLITHIC INTEGRATED CIRCUITS (Page 2 of 2)

Notes:

- 1/ Tests that are performed as part of manufacturer's normal practice do not need to be repeated if the test conditions are equal or better than the conditions imposed by Table 2A.
- 2/ PIND testing need not be repeated if it has been performed by the manufacturer as part of the process flow.
- 3/ X-ray can be performed at any sequence after PIND.
- 4/ Read and record (as a minimum) delta parameters listed in Table 2A. The non-delta parameters may be tested "go/no-go."
- 5/ For one-time programmable read-only memories (PROMs) and programmable logic devices/arrays (PLDs/PLAs), steps 9 through 11, shall be performed after the programming. This specific requirement shall be given in detail part specification depending on the device types and criticality.
- 6/ If more than one burn-in type is required per Table 2A, the delta parameters shall be measured after each required burn-in step. Also, the delta calculations shall be made after each burn-in step.
- 7/ See Table 2A and notes 6/ and 7/ therein. The burn-in duration specified herein indicated as "Static/Dynamic" or "Static or Dynamic." Examples: 72/240 requires 72 hours of static burn-in (if applicable) and 240 hours of dynamic burn-in (if applicable), whereas 160 requires 160 hours of either static of dynamic burn-in, as specified in Table 2A.
- 8/ Limit Burn-in temperature to the maximum operating temperature of diode as specified by the manufacturer. This temperature may be lower than 125°C for commercial or manufacturer's in house Hi- REL parts.
- 9/ Minimum and maximum application temperatures may be used when measuring electrical parameters.
- 10/ PDA applies to cumulative failures during all burn-in steps. The cumulative failures for all levels shall include functional/DC parametrics (excluding deltas) for the lot to be accepted.
- 11/ Pure Tin plating is prohibited as a final finish in EEE parts.

Table 2A. BURN-IN AND ELECTRICAL MEASUREMENT REQUIREMENTS FOR ICs (Page 1 of 3)

	Require	ed Burn-in 1/		Electrical
ІС Туре	Static	Dynamic	Delta	Measurements 2/, 3/, 4/
	(Condition C)	(Condition D)		
Digital Bipolar &	Not required for Digital Bipolar	Required for both technologies.	∆ICC	DC: VIC, VOH, VOL, ICC(IEE), IIL,
Digital MOS/	Technology.		or	IIH, IDD, IOZL, IOZH, IOS
BiCMOS: 6/, 7/		TA = 125℃	∆IDD	
LOGIC (Gates, Buffers,	Required for Digital MOS			AC: TPLH, TPHL, TTLH, TTHL, TPZH,
Flip-Flops, Multiplexers,	Technology.	Vin = Square wave, 50% Duty Cycle to		TPHZ, TPLZ, TPZL, TA, TS, TH
Registers and Counters,		input pins and control pins.		Eurotional Tasta
etc.) RAMs	TA = 125℃			2) For simple logic devices, verify truth
FIFOs		Frequency= 100 Hz to 1 Mnz.		table
Microprocessors/DSPs	Vin= VDD across one-half input pins and	$V_{0,1} = V_{0,0} / 2 \text{ or } V_{0,0} / 2 \text{ through Pl}$		
Interface Peripherals	VSS across the remaining inputs.			b) For complex logic devices such as
				microprocessors EPGAs etc
FPGAs	Vout= 0.5 VDD through RL			functional testing includes fault
PROMs, PLD/PLA 5/				coverage calculations required per
				MII -STD-883 Method 5012
				c)For PROMs, check fuse map; for
				RAMs, perform patternsensitive
				tests such as March, Galpat, etc.
Linear MOS, Bipolar, and	TA = 125°C	TA = 125℃	ΔIIB	DC: ICC, IEE, IIO, VIO, VOPP, AV,
Bi-FET: 7/	Vout= Terminated to ground through RL	Vin= Square wave or sine wave	ΔIIO	CMRR, PSRR
Op-Amp, Instrument		F=10Hz to 100 KHz, 50% duty cycle	ΔVIO	
Amplifiers, S/H, and		Vout= Terminated to ground through RL		AC: Slew rate
Comparator				

Table 2A. BURN-IN AND ELECTRICAL MEASUREMENT REQUIREMENTS FOR ICs (Page 2 of 3)

	Require		Electrical	
ІС Туре	Static	Dynamic	Delta	Measurement 2/, 3/, 4/
	(Condition C)	(Condition D)		
Linear MOS, Bipolar and JFET: 7/ Line Drivers and Receivers	TA = 125℃ Vin= VDD max across one-half input pins and VSS across the remaining inputs.	TA = 125℃ Vin= Square wave at a specified frequency and duty cycle	ΔΙϹϹ ΔΙΙΗ	DC: VOH, VOL, ICC, IIL, IIH, IOS AC: TPLH, TPHL, TTLH, TTHL
		Vout= VCC through RL		Functional Test: Verify truth table.
Linear MOS, Bi-FET, and Bipolar: 6/, 7/ Analog Switches and Multiplexers	TA = 125℃ Vin= VDD max across one-half of inputs and VSS across the other remaining inputs. Vout=±VCC through RL	TA = 125℃ Vin= Square wave F= 100 Khz and 50% duty cycle Vout=±VCC through RL	Δ ICC Δ ID(OFF) Δ IS(OFF) Δ R(ON)	DC: ICC, ID(ON), R(ON), ID(OFF), IS(ON), IS(OFF) AC: T(ON) , T(OFF) break-before-make-time
Linear Bipolar: Voltage Regulators	TA =125°C Vout= Terminated to ground through RL	Not required.	∆ISCD ∆VOUT	DC: ICC, VOUT, IOS, line/load regulation
Linear Bipolar: Pulse-width-modulator	Not required.	TA = 125℃ Vout= Terminated to ground through RL Rext, Cext connected if applicable.	ΔΙΙΟ ΔVREF	DC: VREF, IIB, IIO, IOS, VIO, VOL, VOH, AV, CMRR, PSRR AC: TR , TF, fOSC
Darlington Transistor Array	TA = 125℃ Vout= 15 Vdc through RL	Not required.	∆ICEX ∆hFE	DC: VCE(SAT), VF, ICEX, IF AC: hFE, tPHL, tPLH
Linear CMOS Timers	TA = 125℃ Vout= VCC through RL	Not required.	ΔICEX ΔVOH ΔVOL	DC: VTRIG, VTH, VR, VOL, VOH, VSAT, ICC, ITRIG, ITH, IR, ICEX AC: TTLH, TTHL

Table 2A BURN-IN AND ELECTRICAL MEASUREMENT REQUIREMENTS FOR ICs (Page 3 of 3)

	Require		Electrical	
ІС Туре	Static	Dynamic	Delta	Measurement 2/, 3/, 4/
	(Condition C)	(Condition D)		
Linear MOS and	Not required	TA = 125℃	∆ICC	DC: ICC, ISS, VOS
Bipolar:		Vin= Sine wave at frequency < fo	ΔVOS	
Active Filters		Vout= Terminated to around through RI		AC: fo, Q, input frequency
				range.
Mixed Signal MOS, Bi-	TA = 125℃	TA = 125℃	∆ICC	DC: VREF, VOH, VOL, VIO, ICC,
CMOS and Bipolar: 7/	Vin = Max analog DC input	Vin= Analog input to generate maximum digital	ΔIEE	IEE, IIL, IIH, IOZL, IOZH, IOS, zero
Analog to Digital	Vout $= VCC/2$ through RI	codes.	ΔVIO	error, gain error, linearity
		Vout – VCC/2 through RI		error.
(A/D) Conveners				AC: TC, TS, TH
				Functional Test: Verify
				codes.
Mixed Signal MOS,	TA = 125℃	TA = 125℃	∆ICC	DC: ICC, IEE, IIL, IIH, IOZL, IOZH,
Bi-CMOS and Bipolar 7/	Vin= VDD on one-half data inputs and	Vin = Apply appropriate digital codes for all	ΔIEE	IOS, zero error, gain error,
Digital to Analog	VSS on remaining inputs.	inputs and for control signals.		linearity error, PSRR
(D/A) Converters	Vout= Terminated to ground through	Vout = Terminated to ground through RL.		AC: TC, TS, TH
	RL			Functional Test: Verify
				codes.

Notes:

- 1/ Static and dynamic burn-in shall be performed at maximum recommended operating supply voltage @ TA = 125°C. Biasing conditions including the value of RL shall be selected to assure that the junction temperature shall not exceed Tjmax specified for the device type.
- 2/ See MIL-HDBK-1331: Parameters to be controlled for the Specification of Microcircuits, for symbol definitions.
- 3/ These are typically recommended electrical parameters based on MIL specifications and SMDs. Since electrical parameters are device dependent, refer to detail specifications or manufacturing data sheets for actual DC and AC parametric test conditions and limits.

5. INTEGRATED CIRCUITS (MONOLITHIC)

4/ For digital devices, all DC parameters, functional tests, and switching tests shall be tested at 25°C, at minimum operating temperature and at maximum operating temperature.

For linear devices, all DC parameters shall be tested at 25° C, at minimum operating temperature and at maximum operating temperature. All AC and switching tests shall be performed at 25° C.

- 5/ For level 1 and level 2 applications, one-time programmable devices (e.g., PROMs, PLDs/PLAs), shall be subjected to dynamic burn-in with user application specific burn-in circuit. The post burn-in should include DC, AC, and functional tests for user's program verification.
- 6/ Dynamic burn-in required for level 1 applications.
- 7/ Static or dynamic burn-in acceptable for level 2 and level 3 applications.

Table 3. QUALIFICATION TEST REQUIREMENTS

FOR MONOLITHIC INTEGRATED CIRCUITS (Page 1 of 5)

1/

		MIL-STD-883	Quantity (Accept Number) or LTPD					
		1	Level	1	Le	vel 2	Level 3	
Inspection/Test	Test Methods	Conditions/ Sample Size (No. of Rejects)	883 or Class M 3/	SCD 3/, 5/	883 or Class M	Mfr. Hi-Rel/ SCD/ Commercial	Mfr. Hi-Rel /SCD/ Commercial 6/	
						5/		
Group B								
Subgroup 1 2/		3(0)	0	0	0	0		
Resistance to Solvents	2015							
Subgroup 2		22(0) 22 wires chosen at random from 3 samples	Ο	о	Ο	0		
Bond Strength	2011							
(1) Thermocompression		(1) Condition C or D						
(2) Ultrasonic or Wedge		(2) Condition C or D						
(3) Flip-Chip		(3) Condition F						
(4) Beam Lead		(4) Condition H						
Die Shear Test (or Stud Pull)	2019 or 2027	3(0)	0	0	0	0		
Subgroup 3								
Solderability	2003	Soldering temperature of 245 °C ± 5 °C	0	0	Ο	0		

Table 3. QUALIFICATION TEST REQUIREMENTS FOR

MONOLITHIC INTEGRATED CIRCUITS (Page 2 of 5)

		MIL-STD-883	Quantity (Accept Number) or LTPD						
			Level	1	Le	vel 2	Level 3		
Inspection/Test	Test Methods	Conditions/ Sample Size (No. of Rejects)	883 or Class M 3/	SCD 3/, 5/	883 or Class M 3/	Mfr. Hi-Rel/ SCD/ Commercial3/, 5/	Mfr. Hi-Rel /SCD/ Commercial 6/		
Group C			22(0)	45(0)	22(0)	22(0)			
Operation Life Test 5/	1005	Condition A, C, or D, (1,000 hours at +125oC or equivalent)	Ο	Ο	Ο	Ο			
End-point electrical parameters		As specified in the applicable device procurement specification and Table 2A herein.	0	0	Ο	Ο			

Table 3. QUALIFICATION TEST REQUIREMENTS FOR

MONOLITHIC INTEGRATED CIRCUITS (Page 3 of 5)

	N	MIL-STD-883		Quantity(Ac	ceptNumber) or LTPD		
			Level 1		Level	2	Level 3
	Test	Conditions/	883 or	SCD	883 or	Mfr. Hi- Rel/	Mfr. Hi-Rel
Inspection/Test	Methods	Sample Size (No.	Class M	3/, 5/	Class M	SCD/	/SCD/
		of Rejects)	3/		3/	Commercia I	Commercial 6/
						3/, 5/	
Group D							
Subgroup 1 2/		15(0)	0	0	0	0	
Physical Dimensions	2016						
		15(0)	0	0	0	0	
Subgroup 2		A B2 or D (use Method	Ũ	U	0	0	
a. Lead Integrity	2004	2008 for PCA packages)					
		2000 IUI F GA packages)					
b. Seal	1014						
(1) Fine							
(2) Gross							
Subgroup 3		15(0)	0	0	0	0	
a Thermal Shock	1011	B, 15 cycles					
h Temperature Cycling	1010	C, 100 cycles					
C Moisture Resistance	1004						
d Seal	1014						
(1) Fine	1011						
(1) Fine (2) Gross							
(2) 01033							
Subgroup 4				0			
a. Shock	2002	15(0)	0	0	0	0	
b. Vibration, Variable	2002	В					
Frequency	2007	A					
C. Acceleration	2001	E, Y1 orientation					

Table 3. QUALIFICATION TEST REQUIREMENTS FOR

	Ν	/IL-STD-883	Quantity (Accept Number) or LTPD				
			Level 1		Level	2	Level 3
	Test	Conditions/	883 or	SCD	883 or	Mfr. Hi- Rel/	Mfr. Hi-Rel
Inspection/Test	Methods	Sample Size (No.	Class M	3/, 5/	Class M	SCD/	/SCD/
		of Rejects)	3/		3/	Commercia I	Commercial 6/
						3/, 5/	
Subgroup 4 (continued)							
d. Seal	1014	As applicable					
(1) Fine							
(2) Gross							
e. Visual Examination	2000	As specified in device					
1. End-point Electricals	2009	specification					
Subaroup 5							
Internal Water Vapor (Cavity	1018	3(0) or 5(1)	0	0	0	0	
Packages)		5,000 ppm maximum water content at 100 °C					
Subgroup 6			о	0	0	О	
Adhesion of Lead Finish	2025	15(0)					
Subgroup 7	2024	5(0)	0	0	0	0	
Lid Torque	2024	5(0)					

Table3. QUALIFICATION TEST REQUIREMENTS FOR MONOLITHIC INTEGRATED CIRCUITS (Page 5 of 5)

Notes :

- 1/ Samples shall be selected from the parts that have passed the screening requirements in Table 2.
- 2/ Subgroup 1 can be performed on electrical rejects.
- 3/ Lot specific QCI attributes data is acceptable, provided it meets all inspection/test requirements of Table 3.
- 4/ Use conditions specified in Table 2A (dynamic burn-in condition as applicable). Burn-in temperature and biasing conditions shall be selected to assure that the junction temperature does not exceed Tjmax specified for the device type by the manufacturer.
- 5/ Use of Mfr. Hi-Rel and commercial parts in level 1 and 2 applications requires use of SCD/Detail specification that specifies screening and qualification testing.
- 6/ For level 3 applications, no qualification testing is mandatory; however, it is strongly recommended that all non-QPL/QML devices have life test in accordance with MIL-STD-883, Method 1005, conditions A-D (as appropriate for device type), for 1,000 hours at 125 °C (or equivalent time/temperature per Method 1005, Table 1)

6: MICROCIRCUITS, PLASTIC ENCAPSULATED (PEM)

Policy for PEM Devices

The use of Plastic Encapsulated Microcircuits (PEMs) shall be limited when no alternative parts are available in functional and performance wise. It can be permitted certain application provided each use is thoroughly evaluated for thermal, mechanical, and radiation implications of the specific application and found to meet mission requirements.

Due to the rapid change in wafer-level designs typical of commercial parts and the unknown traceability between packaging lots and wafer lots, lot-specific testing is required for PEMs.

PEMs must be:

- Stored under temperature controlled, clean conditions, protected from ESD and humidity
- Traceable to the branded manufacturer
- Procured from the manufacturer or their approved distributor
- Tested to verify compliance with the performance requirements of the application environment over the intended mission lifetime

Testing in accordance with PEM-INST-001 or ECSS-Q-ST-60-13 shall be performed as necessary to qualify and screen the devices, in order to verify compliance with the application requirements. Radiation evaluation shall address all threats appropriate for the technology, application, and environment, including Total Ionizing Dose (TID), Single Event Effects (SEE), and displacement damage.

Terminal finish of all commercial parts shall be assessed by incoming inspection. Use of PEMs with pure tin plated terminations requires special precautions and mitigations to preclude failures caused by tin whiskers. A Review of mitigation strategies is required.

Table 1. PEM REQUIREMENTS 1/

Project Requirement	Screening (per Table 2)	Qualification 2/ (per Table 3)	DPA 3/
Level 1	0	0	0
Level 2	0	0	0
Level 3	0	0	0

Notes:

- 1.1/ For detailed instructions on PEM requirements and test procedures, including screening, qualification, DPA test procedure, additional evaluation analysis, derating, and handling and storage guidelines refer to Instructions for PEM Selection, Screening, and Qualification, PEM- INST-001 or Commercial EEE Components, ECSS-Q-ST-60-13.
- 1.2/ PEMs qualified according to this document are intended for operation within the manufacturer's data sheet limits. Any uprating and use of PEMs outside the manufacturer's specified range, particularly the temperature limits, is not acceptable.
- 1.3/ Radiation Lot Acceptance Testing (RLAT) of PEMs shall be performed independently of any data that may exist for equivalent or similar hermetically sealed devices. This is necessary as market conditions may drive unannounced process changes, creating differences in radiation response.
- 1.4/ Most of the requirements described in this document are also applicable to commercial discrete and hybrid semiconductor devices encapsulated in plastics. However, for some parts tailoring of the screening, qualification, and DPA procedures might be necessary. In this case adjustments of the procedures for a particular part type should be done in detail specification or SCD of the part. For discrete semiconductor devices refer to MIL-STD-750 for the appropriate test methods.
- 2/ Qualification by Flight History or similarity is not acceptable for PEMs. Commercial PEM manufacturers are known to produce the same part number with die sourced from different wafer lots having different die revisions. The same part number may also be made by multiple production plants and processed according to requirements that vary between wafer and assembly plants.

3/ DPA for PEMs shall focus on three major areas of concerns: 1) integrity of the package, 2) quality of assembly, and 3) defects in the die. This analysis shall also evaluate package and die-level homogeneity of the lot. When obvious gross defects are revealed during DPA, it is usually an indication that manufacturer's processes are out of control, and a replacement of the lot might be required. Therefore, it is recommended that DPA or Construction Analysis be performed prior to screening and qualification of the lot. Additional evaluations might be necessary to further mitigate risks associated with the use of PEMs.

Table 2 SCREENING REQUIREMENTS FOR PEMS 1/

Screen	Test Method and Conditions	Level 1	Level 2	Level 3
1. External visual, and serialization 2/	Per paragraph 5.3.1. of PEM-INST-001	0	0	0
2. Temperature cycling	MIL-STD-883, Method 1010, Condition B (or to the manufacturer's maximum storage temperature range, whichever is less). Temperature cycles, minimum.	20	20	10
3. Radiography 3/	Per paragraph 5.3.2. of PEM-INST-001	0	0	0
4. C-SAM inspection 4/	Per paragraph 5.3.3. of PEM-INST-001	0	0	0
5. Initial (pre-burn-in) electrical measurements (EM)	Per device specification, at 25℃	0	0	0
5/	At min. and max. rated operational temperatures.	0	0	
6. Engineering review (Steps 1 to 5) 6/				
7. Static (steady-state) burn-in (BI) test at 125°Cor at max. operating temperature 7/	MIL-STD-883, Method 1015, condition A or B. Hours, minimum depending on the BI temperature.	240 hrs. at 125°C 445 hrs. at 105°C 885 hrs. at 85°C 1,560 hrs. at 70°C	160 hrs. at 125°C 300 hrs. at 105°C 590 hrs. at 85°C 1,040 hrs. at 70°C	160 hrs. at 125°C 300 hrs. at 105°C 590 hrs. at 85°C 1,040 hrs. at 70°C
7a. Post static BI electrical measurements @ 25 °C	Per device specification. Calculate Delta when applicable.	0	0	0
9. Dynamic burn-in test at 125°Cor at max. operating temperature 7/	MIL-STD-883, Method 1015, Cond. D. Hours, minimum.	Same as test step 7.	Same as test step 7.	Same as test step 7.

10. Final parametric and functional tests	Per device specification (at 25 °C, maximum, and minimum rated operating			
	temperatures).	0	0	0
11.Calculate percent defective (Steps 7 to 10) 6/	Maximum acceptable PDA.	5%	10%	10%
12. External visual/packing 2/	Per paragraph 5.3.1 and Section 8 of PEM-INST-001.	0	0	0

Table 2. SCREENING REQUIREMENTS FOR PEMS 1/

1/ General

1.1/ Screening is performed on 100% of flight parts.

- 1.2/ Historically, only parts with tight lot-specific controls imposed during manufacturing had been allowed for applications in level 1 projects. Such a control is impossible for PEMs, and the suggested screening procedures are not considered as a substitute for manufacturing control, but rather as risk mitigation measures.
- 1.3/ Any pure tinned parts shall be screened after retinning mitigation applied.
- 2/ It is recommended to combine the incoming/outgoing visual inspections with the serialization and packaging to reduce handling and possible damage to the parts. Serialization should be performed in such a way to allow a topside C-SAM inspection. Flight parts should be handled and stored in a manner to prevent mechanical and ESD damage, contamination, and moisture absorption.
- 3/ To minimize handling, only a top view X-ray inspection is required. Focus to inspect for wire sweeping and obvious defects in the part. Depending on the results of the top view X-ray and/or part construction, a side view may be required.
- 4/ Acoustic Microscopy (C-SAM)
 - 4.1/ General. Acoustic microscopy is performed to screen out defects at critical die surface and lead tip wire-bond areas of the parts and screening, except for power devices, is performed only at the topside.
 - 4.2/ Coated Die. Topside of the internal portion of the leads is inspected in PEMs with polymer die coating. Inspection of the die area is not required, as the die coating has a low acoustic impedance that appears as a false delamination.
 - 4.3/ Power Devices. For power parts, the bottom side inspection of die attachment might be replaced with the thermal impedance measurements.

4.4/ Rejection Criteria.

- Any measurable amount of delamination between molding compound and the die surface.
- Any delaminations on the leads at wire bond areas.
- Delaminations extending more than 2/3 the length of internal part of the leads.

5/ Electrical Measurements

- 5.1/ Special Testing.In addition to parametric and functional measurements per data sheets, supplement and/or innovative testing techniques (e.g. IDDQ leakage currents, thermal impedance, output noise, etc.) can be used to select better quality parts from the lot (cherry pick) as flight candidates.
- 5.2/ Failure modes (parametric or catastrophic) should be recorded for each failed part.

6/ Engineering review

6.1/ More than 10% CSAM rejects might require additional evaluation of thermo-mechanical integrity of the lot or its replacement.

6.2/ Most established PEMs manufacturers guarantees 3-sigma level process minimum, which means that less than 0.27% of the parts can be out of specification. Excessive fallouts during initial electrical measurements at room temperature might be due to a poor quality of the lot, effect of temperature cycling performed before electrical measurements, or it might be an indication of problems with the testing lab. When excessive rejects are experienced, the project PE decides whether a lot replacement or additional evaluation is needed based on observed failure modes and results of failure analysis. Excessive rejects during initial electrical measurements might be a legitimate cause for lot replacement.

- 7/ Burn-in (BI)
 - 7.1/ *General.* Burn-in is a complex, product-specific test and if possible should be conducted by the manufacturer of the part. If a user performs this test, special care should be taken not to exceed maximum current, voltage, and die temperature limits.
 - 7.2/ Burn-in Temperature. The BI temperature is a "stress" temperature used to precipitate failure of defective parts and is typically much higher than the operational temperature of the part, where the characteristics are guaranteed to remain within the data sheet limits. Most PEM manufacturers use temperatures in the range from 125°Cto 150°Cto periodically perform BI to monitor quality of their product. However, if the parts engineer is unable to justify the suitability of burn-in at 125°C, the burn-in ambient temperature shall be

6. MICROCIRCUITS, PLASTIC ENCAPSULATED(PEM)

limited to the maximum operating temperature per the device specifications provided by the manufacturer.

- 7.3/ *Junction Temperature.* The junction temperature during BI testing should not exceed the absolute maximum rated junction temperature for the part.
- 7.4/ Molding Material Glass Transition Temperature. When the die temperature is close to or exceeds the glass transition temperature (Tg) of the molding compound (MC), electrical and mechanical properties of MC may change significantly and new degradation mechanisms may cause failures of the part. For most molding compounds, Tg values exceed 140 to 150°C, which gives a necessary temperature margin for 125°CBI. Reliability of the PEMs, which are manufactured with low-Tg molding compounds (Tg < 120°C), is difficult to assess, and such parts are not recommended for space projects without additional extensive analysis and testing. Glass transition temperature measurements are recommended prior to BI if usage of low-Tg molding compound for the lot is suspected.
- 7.5/ Protection. In some parts the sensitivity of the input/output ESD protection circuits increases with temperature and these circuits can be turned on easily, at lower and/or shorter voltage spikes, than at room temperature. For this reason, special care should be taken to prevent possible power line transients during burn-in testing.
- 7.6/ Excessive proportion of functional BI failures, even when the total number of failures is within the PDA limits, might be an indication of serious lot reliability problems. In these cases additional testing and analysis of the parts might be required.
- 7.7/ Steady-state burn-in is performed on all linear and mixed signal devices (see Table 2A for details on burn-in conditions). The duration of steady-state burn-in can be reduced 50% if the parts are to be subjected to dynamic burn-in testing.
- 7.8/ Dynamic burn-in is not required for parts operating under steady-state conditions, e.g. voltage references, temperature sensors, etc.
- 7.9/ Only one type of BI test, either static or dynamic, is required for level 2 and 3 parts.
- 7.10 Under special circumstances, when it is technically and economically viable, and for components, which are difficult to assess at the piece part level, alternative testing in lieu of static and/or dynamic BI testing (for example, board-level burn-in) may be permitted. Board-level burn-in shall not be routinely substituted for piece part burn-in as a convenience.

Table 3. QUALIFICATION REQUIREMENTS FOR PEMS 1/ (Page 1 of 2)

Process	Sub Test	Test Methods & Conditions	QTY (Failures)			
			Level 1	Level 2	Level 3	
1. Visual inspection & serialization 2/		Section 5, paragraph 5.3.1 of PE <u>M-INST-001</u>	32	32	17	
2. Radiation analysis		TID and SEE	3/	3/	3/	
3. Baseline C-SAM	(Parts in subgroup 1 only)	Section 5, paragraph 5.3.1 of PEM-INST-001	22	22	N/A	
5. Preconditioning	Moisture soak 4/ SMT devices	<u>JESD22 – A113-B, p</u> ara. 3.1.5, condition A (168 hours,+85°C, 60% RH).	32	32	17	
	Reflow simulation (with flux application, cleaning, and drying)	JESD22-A113-B, Table 2 and paragraphs. 3.1.6 through 3.1.9. Peak solder reflow temperature +235 °C.	32	32	17	
	Through hole devices Resistance to soldering temperature	JESD22-B106-B.	32	32	17	
4. Electrical measurements	Per device specification	Measure at 25°C, min. & max. rated temperatures.	32(0)	32(0)	17(0)	
6. Life testing Subgroup 1	HTOL, 125°C5/, 6/	MIL-STD-883, Method 1005, Cond. D Hours, minimum.	22 2,000	22 1,500	10 500	
	Electrical measurement (per specification)	Measure at 25℃, min. & max. rated temperatures.	22(0)	22(0)	10(0)	
6a. Temperature cycling Subgroup 1	Temperature cycling 5/, 7/	MIL-STD-883 Method 1010, Cond. B (-55 °C to +125 °C), cycles, minimum.	22 500	22 200	10 100	
	Electrical measurement (per specification)	Measure at 25°C, min. & max. rated temperatures.	22(0)	22(0)	10(0)	
	C-SAM 8/	Section 5, paragraph 5.3.3.	22	22	N/A	
	DPA or FA	9/	0	0	N/A	
7. Highly accelerated stress test (HAST)	Biased HAST 5/	JESD22 - A110, with continuous bias (96 hours, +130 °C, 85% RH).	10	N/A	N/A	
---	------------------	---	-----	-----	-----	
Subgroup 2	Unbiased HAST 5/	JESD22-A118, Condition A (96 hours, +130 °C, 85% RH).	N/A	10	7	

Table 3 QUALIFICATION REQUIREMENTS FOR PEMS 1/ (Page 2 of 2)

- 1/ All parts shall be selected from a screened lot.
- 2/ This step is not performed if results of the screening are available.
- 3/ Radiation hardness of the parts must be assessed on a lot-specific basis according to the application requirements. So that analysis can be completed prior to screening and qualification, un-screened samples can be used for this test. An additional number of samples, depending on radiation requirements, shall be provided to perform this test.
- 4/ Moisture soak is performed as a part of preconditioning to mimic worst-case moisture absorption conditions of the PEM molding material, which could cause PEMs to be damaged during soldering to boards.
- 5/ Conditions of the temperature cycling, HAST, and high temperature life testing (HTOL) can be tailored according to specifics of the device application.
- 6/ The junction temperature should not exceed the absolute maximum rated junction temperature for the part. If 125 °C ambient causes the maximum rated junction temperature to be exceeded, the ambient temperature should be decreased appropriately.
- 7/ Temperature cycling is performed after HTOL testing on the same samples only for economic reasons. This test can be also performed on a separate group of parts if additional samples are provided (22, 22, and 10 samples for levels 1, 2, and 3, respectively).
- 8/ This C-SAM examination is performed to estimate mechanical damage to the part due to temperature cycling and reflow simulation (or resistance to soldering test) by comparing acoustic images with the baseline measurement results.
- 9/ Failure analysis is performed on any failures during qualification tests to determine whether they are caused by lot-related defects, manufacturing process problems, or improper testing. If no failures are observed, a special evaluation (DPA) should be performed to ensure that no degradation of wire bonding, cratering, and mechanical damage to glassivation and metallization systems occurred (for level 1 and 2 parts only).

Applicable Standards for Test Methods

JESD22-A113-B: Preconditioning of nonhermetic surface mount devices prior to reliability testing. JESD22-B106-B: Resistance to Soldering Temperature for Through-Hole Mounted Devices JESD22-A110-B: Highly-Accelerated Temperature and Humidity Stress Test (HAST) JESD22-A118: Accelerated Moisture Resistance - Unbiased HAST

Destructive Physical Analysis (DPA) & Construction Analysis (CA)

Destructive Physical Analysis, or Construction Analysis (CA), shall be performed to obtain information regarding design, workmanship, and process quality related to a PEM manufacturing lot. Samples for DPA or CA (5 pcs. minimum) should be selected randomly from different portions of the procurement lot.

TEST	SN1	SN2	SN3	SN4	SN5	PROCEDURE	COMMENTS
External visual inspection	x	x	x	x	x	MIL-STD-750 method 2071 MIL-STD-883 method 2009	MIL specifications are not fitted to visual inspection of PED but can be used as reference (Note 1)
X-ray inspection	x	х	Х	Х	Х	MIL-STD-750 method 2076 MIL-STD-883 method 2012	-
C-SAM test	Х	X	X	X	X	JEDEC J-STD-020	Only applicable to plastic package
Permanence of marking	X	Х	Х	X	Х	ESCC 24800	-
PIND test (cavity package)	X	Х	Х	Х	х	MIL-STD-750 method 2052 MIL-STD-883 method 2020	-
Hermeticity (cavity package)			Х	х	х	MIL-STD-750 method 1071 MIL-STD-883 method 1014	-
Residual gas analysis (cavity package)			Х	Х	х	MIL-STD-750 Method 1018 MIL-STD-883 Method 1018	5000 ppm H₂O max at 100°C
Lead finish analysis and pure tin identification	x	x				Energy Dispersive X-ray analysis (EDX), X-ray fluorescence, Microfluorescence, Differential Scanning Calorimeter (DSC)	Analysis to identify lead finish w.r.t. RoHs problematic
Solderability	x	x				MIL-STD-750 method 2026 MIL-STD-883 method 2003	-

A) Construction Analysis (CA) Sequence

Terminal strength	x	x				MIL-STD-750 Method 2036 MIL-STD-883 Method 2004	-
Delidding	Х	Х	Х	Х		-	-
Internal visual inspection	x	x	x	x		ESCC 2045000 ESCC 2045010 ESCC 2059000	The die revision shall be identified and recorded
SEM inspection	x	x				MIL-STD-750 method 2077 MIL-STD-883 method 2018	To verify the quality of wire bonding, glassivation integrity, die interconnect metallization
Bond strength (for wedged bonding)	X	x	X			MIL-STD-750 method 2037 MIL-STD-883 method 2011	-
Bond shear (for ball bonding)	x	x	x			JEDEC JASD22-B116	-
Glassivation integrity		x	x	x		MIL-STD-883 method 2021	Make sure that the chemical etchant is suitable for the metallization
Die shear test (cavity package)	x	x	x			MIL-STD-750 method 2017 MIL-STD-883 method 2019	-
Package level cross-sectioning					x	Micro-sectioning of leads shall be performed to assess presence and characteristics of the under-layer	Including die micro-sectioning
Visual, SEM and material analysis					X	-	-

Note 1: In addition to MIL specification criteria, inspect for any evidence of:

-Package deformation

-Foreign inclusions in the package, voids and cracks in the plastic encapsulant

-Deformed leads, peeling, blistering or corrosion of finishing

-Legibility and correctness of marking

-Homogeneity of the lot (package level)

TEST	SN1	SN2	SN3	PROCEDURE	COMMENTS
External visual inspection	x	x	x	MIL-STD-750 method 2071 MIL-STD-883 method 2009	MIL specifications are not fitted to visual inspection of PED but can be used as reference (Note 1 of section H.3)
PIND test (cavity package)	х	x	х	MIL-STD-750 method 2052 MIL-STD-883 method 2020	-
Hermeticity (cavity package)	x	х	Х	MIL-STD-750 method 1071 MIL-STD-883 method 1014	-
Solderability	x	X		MIL-STD-750 method 2026 MIL-STD-883 method 2003	-
Delidding	X	X	Х	-	-
Internal visual inspection	x	x	x	ESCC 2045000 ESCC 2045010 ESCC 2059000	-
Bond strength (for wedged bonding)	х	x	х	MIL-STD-750 method 2037 MIL-STD-883 method 2011	-
Bond shear (for ball bonding)	х	х	Х	JEDEC JASD22-B116	-
Glassivation integrity		x	x	MIL-STD-883 method 2021	Make sure that the chemical etchant is suitable for the metallization
Die shear test (cavity package)	X	x	X	MIL-STD-750 method 2017 MIL-STD-883 method 2019	-

B) Destructive Physical Analysis (DPA) Sequence

7: SEMICONDUCTOR DEVICES, DISCRETE (Diodes, Transistors)

		Screen to Requirements in	Qualify to Requirements in
Procurement Specification	Use As Is	Tables 2 or 2B 2/	Tables 3 or 3A 2/
Level 1:			
1) ESCC 5000	0		
2) JANS	0		
3) JANTXV, JANTX		0	
4) JANJ, SCD		0	0
Level 2:			
1) ESCC 5000	0		
2) JANS	0		
3) JANTXV, JANTX		3/	
4) JANJ, SCD, Mfg. HI-REL 4/		0	0
5) Commercial		0	0
Level 3:			
1) ESCC 5000	0		
2) JANS	0		
3) JANTXV, JANTX		3/	
4) JANJ		3/	
5)SCD, Mfg. Hi-Rel, Commercial		O 5/	

Table 1 DISCRETE SEMICONDUCTOR REQUIREMENTS 1/

Notes:

- 1/ JANS, JANTXV, JANTX and JANJ designations are defined in MIL-<u>PRF-19500(</u> General Specification for Semiconductor Devices). Plastic encapsulated semiconductors are not covered by this Section. Refer to section M3 for tests required on PEMs.
- 2/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (military or SCD) need not be repeated.
- 3/ All cavity devices shall require PIND testing. Condition A, Method 2052, of <u>MIL-STD-750</u>shall be used.

7. SEMICONDUCTOR DEVICES, DISCRETE Page 77

- 4/ Manufacturer High Reliability (Mfr. Hi-Rel). This designation includes pats that are available only to a manufacturer's controlled reliability test program as described in the manufacturer's catalog. These test programs vary from manufacturer to manufacturer
- 5/ Level 3 applications parts shall require screening to Table 2. No qualification testing per Table 3 is mandatory; however, it is strongly recommended that all non- military/ESCC devices have life test in accordance with MIL-STD-750, Method 1005, conditions A-D (as appropriate for device type), for 1,000 hours at 125 °C (or equivalent time/temperature per Method 1005, Table 1).

Table 2 DIODE SCREENING REQUIREMENTS (Page 1 of 2)

		MIL-STD-750	Lev	el 1	Lev	vel 2	Level 3
			JANTXV,	JANJ, SCD	JANJ, SCD,		SCD, Mfg.
Inspection/Test	Methods	Conditions	JANTX		Mfg. HI-REL	Commercial	HI- REL,
					.		Commercial
1. Internal Visual	2074			0	1/	1/	1/
	or 2073						
2. Temperature	1051	No dwell required at		0	0	0	
Cycling 2/		25 °C. Use maximum storage temperature					
		range, 20 cycles, 10 minutes min. at extremes.					
3. Surge Current 3/	4066	Condition B 10 surges, one per minute, 7		0	0	0	
		msec minimum.					
4. Constant	2006	20,000 Gs Y1 direction except 10,000 Gs for		0			
Acceleration		power rating > 10 Watts @ +25 °C.					
5. PIND4/	2052	Condition A.	0	0	0	0	0
6. FIST5/	2081	Axial lead diodes only.		0			
7. BIST5/	2082	Axial lead diodes only.		0			
8. Serialization			0	0			
9. Initial Electrical		Per Table 2A herein. @ 25 °C	0	0	0	0	O 7/
Measurements			Read/Record	Read/Record			
			6/	6/			
10. Burn-in 7/	1038	Per Table 2A herein. Condition A and B	0	0	0	0	O 9/
		Duration (hours).					
		HTRB.	48	96	48	48	0
		Power	160	240	160	160	160
11. Final Electrical		Per Table 2A herein.	0	0	0	0	O 8/
Measurements		@ 25 °C, min . and max Operating Temp.	Read/Record	Read/Record			
		8/					
12. Calculate Deltas		Per Table 2A herein.	0	0			
13. Calculate PDA			5%	5%	10%	10%	20%
<u>10/</u>							
14.Hermetic Seal	1071		0	0	0	0	
a.Fine Leak		G or H					
b.Gross Leak		C or K					

15. Radiographic	2076	0	0	0	0	
16. External Visual	2071	0	0	0	0	0
11/						

Table 2 DIODE SCREENING REQUIREMENTS (Page 2 of 2)

Notes:

- 1/ DPA shall be performed on five samples to the requirements of <u>S-311-M-70</u> in lieu of internal visual. No failures are permitted.
- 2/ For glass bodied diodes, perform thermal shock, instead of the temperature cycling test, per<u>MIL-STD-750</u>,Method 1056, condition A.
- 3/ Not required for voltage reference, transient voltage suppressor, current regulator, or varactor diodes.
- 4/ All cavity devices shall require PIND testing. Condition A, Method 2052, of MIL-STD-750 shall be used.
- 5/ Not required for double plug or case mounted diodes. Omit FIST for temperature compensated reference diodes.
- 6/ Read and Record (as a minimum) delta parameters listed in Table 2A. The non- delta parameters may be tested as "go/no-go"
- 7/ See Table 2A to determine if the HTRB and Power burn-in are both applicable or not. For thyristors, use MIL-STD-750, Method 1040, condition B, +25°C, for the same durations. If more than one burn-in type is required per Table 2A, the delta parameters shall be measured after each required burn-in step. Also, the delta calculations shall be made after each burn-in step.
- 8/ Minimum and maximum application temperatures may be used when measuring electrical parameters.
- 9/ Limit Burn-in temperature to the maximum operating temperature of diode as specified by the manufacturer. This temperature may be lower than 125°C for commercial or manufacturer's in house Hi- REL parts.
- 10/ PDA applies to cumulative failures during all burn-in steps. The cumulative failures for all levels shall include functional/DC parametrics (excluding deltas) for the lot to be accepted.
- 11/ Pure tin plating is prohibited as a final finish on EEE parts.

		Required Burn-In		Electrical
Diode Types	HTRB (Condition A)	Power (Condition B)	Delta Parameters	Measurements (Notes 1, 2, and 3)
Rectifier (Power, Fast Recovery, High Voltage)	80% rated VRM (Note 4) 125°C <ta<150°c< td=""><td>60 Hz Sinewave Rated VRWM and IO TA = 25℃</td><td>ΔVF ΔIR</td><td>VF, IR, VR, VBR, IFSM trr, Cj.</td></ta<150°c<>	60 Hz Sinewave Rated VRWM and IO TA = 25℃	ΔVF ΔIR	VF, IR, VR, VBR, IFSM trr, Cj.
Switching (General Purpose, Schottky, RF, PIN)	80% rated VRM 125°C <ta<150°c< td=""><td>60 Hz Sinewave Rated VRWM and IO TA = 25℃</td><td>ΔVF ΔIR</td><td>VF, VR, VBR, IR, trr,T, Cj, Po/Pi</td></ta<150°c<>	60 Hz Sinewave Rated VRWM and IO TA = 25℃	ΔVF ΔIR	VF, VR, VBR, IR, trr,T, Cj, Po/Pi
Zener (Voltage Reference)	Not applicable	Specify IZ to meet rated Pd TA = 125℃	ΔVZ	VF, Vz, Iz ,ZZ,aVz
Current Regulator Diode	Not required	Rated VPOV TA = 25℃	∆ls	VL, ZS, ZK, Vs, Is,αIs.
Transient Suppressor Diode	80% rated VRWM 125°C <ta<150°c< td=""><td>Specify lp, Tp, number of pulses TA = 25 °C (Note 5)</td><td>ΔVBR ΔIR</td><td>VBR, VCM, ISM, IR.</td></ta<150°c<>	Specify lp, Tp, number of pulses TA = 25 °C (Note 5)	ΔVBR ΔIR	VBR, VCM, ISM, IR.
Light Emitting Diode	Not applicable	Rated IF TA =25℃	ΔVF ΔIV	IV, IR, VF CT
Tunnel Diode (Microwave)	Rated VR 125°C <ta<150°c< td=""><td>Specify IF & VF to meet max. Pd TA =25℃</td><td>ΔVP ΔVR</td><td>IP, IV, VR, VF, VV CT</td></ta<150°c<>	Specify IF & VF to meet max. Pd TA =25℃	ΔVP ΔVR	IP, IV, VR, VF, VV CT
Varactor (Tuning)	80% rated VRM 125°C <ta<150°c< td=""><td>Not required</td><td>ΔIR ΔCT</td><td>IR, VBR CC, CT, Q, Ct1, LS, Ctz</td></ta<150°c<>	Not required	ΔIR ΔCT	IR, VBR CC, CT, Q, Ct1, LS, Ctz
Thyristor (SCRs)	80% rated VRM 80% rated VDM 125°C <ta<150°c< td=""><td>Rated VDWM & VRWM. Specify VGT & VGQ. (Note 6) TA = 25℃</td><td>∆IDM ∆IRM</td><td>IDM, IGM, IGT, IL, IRM, VBR, VGT, dV/dt, ton, toff</td></ta<150°c<>	Rated VDWM & VRWM. Specify VGT & VGQ. (Note 6) TA = 25℃	∆IDM ∆IRM	IDM, IGM, IGT, IL, IRM, VBR, VGT, dV/dt, ton, toff

Table 2A BURN-IN AND ELECTRICAL MEASUREMENT REQUIREMENTS FOR DIODES

Notes:

1/ See<u>MIL-PRF-19500,</u>Appendix B for symbol definitions.

2/ Minimum required parameters are specified. When necessary, application critical parameters not listed in the table shall also be measured.

3/ All DC parameters shall be tested at 25°C, at minimum and at maximum operating temperatures. All AC parametric measurements shall be performed at the required 25 °C.

Page 82

- 4/ Case mounted rectifiers with IO rated > 10 A @Tc= 100 $^{\circ}$ Cdo not require HTRB.
- 5/ Refer to slash sheets (e.g., /516) for the unique power burn-in sequence of transient suppressor diodes.
- 6/ Power burn-in is applied only to SCR specifically designed with gate turn-off control; otherwise, use method 1040, condition A or B.

Table 2B TRANSISTOR SCREENING REQUIREMENTS (Page 1 of 2)

		MIL-STD-750	Lev	el 1	L	evel 2	Level 3
Inspection/Test	Methods	Conditions	JANTXV/ JANTX	JANJ, SCD	JANJ, SCD, Mfg. HI- REL	Commercial	SCD, Mfg. HI-REL, Commercial
1. Internal Visual	2072	For power FETs, use Method 2069; for RF types, use Method 2070.	1/	1/	1/	1/	1/
2. Temperature Cycling	1051	No dwell required at 25℃. Use maximum storage temperature range, 20 cycles. Extremes > 10 min.		0	0	0	
3. Constant Acceleration	2006	20,000 Gs Y1 direction except 10,000 Gs for power rating > 10 Watts +25°C.		0			
4. PIND	2052	Condition A.	0	0	0	0	0
5. Serialization			0	0			
6. Initial Electrical Measurements		Per Table 2C herein. @ 25 °C,	O Read/Record 2/	O Read/Record 2/	0	0	Ο
7. Burn-in 3/, 4/	1039	Per Table 2C herein. Condition A or B. Duration (hours). HTRB Power	O 48 160	O 96 240	O 48 160	O 48 160	O 160
8. Final Electrical Measurements		Per Table 2C herein. @ 25 °C, min. and max. Operating Temp. 5/	O Read/Record	O Read/Record	0	0	0 4/
9. Calculate Deltas 6/		Per Table 2C herein.	0	0			
10. Calculate PDA 7/			5%	5%	10%	10%	20%

11.Hermetic Seal	1071		0	0	0	0	
a. Fine Leak		G or H					
b. Gross Leak		C or K					
12. Radiographic	2076		0	0			
13. External Visual	2071		0	0	0	0	0
8/							

Table 2B TRANSISTOR SCREENING REQUIREMENTS (Page 2 of 2)

Notes:

- 1/ DPA shall be performed on five samples in lieu of internal visual. No failures are permitted.
- 2/ Read and Record (as a minimum) delta parameters listed in Table 2A. The non- delta parameters may be tested as "go/no-go".
- 3/ See Table 2A to determine if the HTRB and Power burn-in are both applicable or not. For Power FETs, use <u>MIL-STD-750</u>, Method 1042, condition A and B, for the same duration. For thyristors, use Method 1040. If more than one burn-in type is required per Table 2A, the delta parameters shall be measured after each required burn-in step. Also, the delta calculations shall be made after each burn-in step.
- 4/ Limit Burn-in temperature to the maximum operating temperature of transistor as specified by the manufacturer. This temperature may be lower than 125°C for commercial or manufacturer's in house Hi-REL parts.
- 5/ Minimum and maximum application temperatures may be used when measuring electrical parameters.
- 6/ For delta failures greater than 10%, lot shall be reviewed for acceptance.
- 7/ PDA applies to cumulative failures during all burn-in steps. The cumulative failures for all levels shall include functional/DC parametrics (excluding deltas) for the lot to be accepted.
- 8/ Pure tin plating is prohibited as a final finish on EEE parts.

Table 2C BURN-IN AND ELECTRICAL MEASUREMENT REQUIREMENTS FOR TRANSISTORS

		Required Burn-in	Delta Parameters	Electrical Measurements (Notes 1, 2, and 3)
Transistor Type	HTRB (Condition A)	Power (Condition B)		
Bipolar Transistors (Switching, Low High Power, Dual, General Purpose.)	80% rated VCBO 125°C <ta<150°c< td=""><td>Specify VCB or VCE to meet max PT TA = 25 °C</td><td>∆ICBO or∆ICEO ∆hFE</td><td>ICB, ICEO, ICBO, IEBO, V(BR)CEO, V(BR)CBO, V(BR)EBO, V(BR)CES, VCE(SAT), VBE(SAT), hFE, ton, toff, ts, tf, hfe, Cobo, Cibo</td></ta<150°c<>	Specify VCB or VCE to meet max PT TA = 25 °C	∆ICBO or∆ICEO ∆hFE	ICB, ICEO, ICBO, IEBO, V(BR)CEO, V(BR)CBO, V(BR)EBO, V(BR)CES, VCE(SAT), VBE(SAT), hFE, ton, toff, ts, tf, hfe, Cobo, Cibo
Bipolar Transistors(RF, High-Frequency)	80% rated VCBO 125°C <ta<150°c< td=""><td>Specify VCB to meet max PT TA = 25 °C</td><td>∆ICEO ∆hFE</td><td>ICEO, V(BR)CEO, V(BR)CBO, V(BR)EBO VCE(SAT), hFE GPE, NF, hfe,η, Cobo</td></ta<150°c<>	Specify VCB to meet max PT TA = 25 °C	∆ICEO ∆hFE	ICEO, V(BR)CEO, V(BR)CBO, V(BR)EBO VCE(SAT), hFE GPE, NF, hfe,η, Cobo
Junction Field Effect (JFET)	80% rated VGS VDS = 0 125°C <ta<150°c< td=""><td>80% rated VGS Specify VDS to meet max PT TA = 25 °C</td><td>∆IDSS or∆IGSS ∆yfs</td><td>VDS(ON), VGS(OFF), V(BR)GSS, IGSS, IDSS, Ciss, Crss, yfs, yos.</td></ta<150°c<>	80% rated VGS Specify VDS to meet max PT TA = 25 °C	∆IDSS or∆IGSS ∆yfs	VDS(ON), VGS(OFF), V(BR)GSS, IGSS, IDSS, Ciss, Crss, yfs, yos.
MOSFET	80% rated VDS VGS= 0V TA= 125 °C	80% of rated VGS VDS= 0V TA= 125 °C	ΔIDSS or∆IGSS ΔVGS(TH) ∆rds(on)	V(BR)DSS, VGS(TH), VDS(ON), VSD, rds(on), ton, toff, trr, CT.
Darlington	80% rated VCBO 125°C <ta<150°c< td=""><td>Specify VCB or VCE to meet max PT TA = 25 °C</td><td>∆hFE ∆ICE</td><td>VCE(SAT), VBE(SAT), VBE(TH), V(BR)CEO, ICEO, IEBO, ICE</td></ta<150°c<>	Specify VCB or VCE to meet max PT TA = 25 °C	∆hFE ∆ICE	VCE(SAT), VBE(SAT), VBE(TH), V(BR)CEO, ICEO, IEBO, ICE
Optocoupler	IF = 0 80% Rated VCBO TA = 125 °C	IF = rated max Specify VCE tomeetmaxPT TA = 25 °C	ΔhFE ΔIC(OFF) ΔIC(ON)	VCE(SAT), V(BR)CEO, VF IC(OFF), IC(ON), IR, hFE, tr, tf, Cobo.

Notes:

- 1/ See<u>MIL-PRF-19500,</u>Appendix B for symbol definitions.
- 2/ Recommended electrical parameters are specified. Since electrical parameters are device dependent, the conditions and limits pertaining to a device type shall be specified in a detail specification.
- 3/ All DC parameters shall be tested at 25°C, at minimum operating temperature and at maximum operating temperature. All AC parametric measurements shall be made at the required 25°C.

Table 3 DIODE QUALIFICATION TEST REQUIREMENTS 1/, 2/ (Page 1 of 2)

			Quantity (Accept Number)				
		MIL-STD-750	Level 1	Le	vel 2	Level 3	
Inspection/Test	Methods	Conditions	JANJ, SCD	JANJ, SCD, Mfg. HI-REL	Commercial	SCD, Mfg. Hi- REL, Commercial	
Subgroup 1		Separate samples may be used for each test.	6 (0)	4 (0)	4 (0)	Not Required	
Physical Dimensions	2066	Dimensions in accordance with specified case outline. In case of failure, 100%	0	0	0		
Solderability	2026	dimensional inspection shall be performed.	0	0	0		
Resistance to Solvents	1022		0	0	0		
Subgroup 2 Decap-Internal Visual	2075	In accordance with internal visual precap criteria.	6 (0) O	Not Required	Not Required	Not Required	
SEM	2077	Die with expanded metallization contacts or metallization interconnects.	0				
Bond Strength (Wire or Clip Bonded Devices)	2037	All wire bonds.	0				
Die Shear (Exclude Axial Lead Devices)	2017		0				
Subgroup 3 Accelerated Steady State Operation Life	1027	Bias conditions as specified: Eutectic die attach. Tj = +275°C for 96 hours minimum. Soft solder die attach. Ti = +225 °C for 168	12 (0) O	Not Required	Not Required	Not Required	
Electrical Measurements	1038	hours minimum. Schottky diodes Tj = rated Tj for 240 hours minimum. As specified in Table 2A herein.	0 0 0				

7. SEMICONDUCTOR DEVICES, DISCRETE

		MIL-STD-750	Level 1	L	evel 2	Level 3
			JANJ,	JANJ,		
Inspection/Test	Methods	Conditions	SCD	SCD,	Commercial	SCD,Mfg.
				Mfg.		HI-REL,
				HI-REL		Commerc
Subgroup 4			22 (0)	12 (0)	22 (0)	Not
Operation Life						Required
Steady State						
	1026	1,000 hours minimum at maximum				
		operating junction temperature.	0	0	0	
or			Or	Or	or	
			_		0	
Intermittent	1037	6,000 cycles min.	0	0	0	
or			Or	Or	or	
Blocking	1048		0	0	0	
Flectrical		As specified in Table 2A herein.	0	0	0	
Measurements			Č	, ,	Ŭ	

Table 3 DIODE QUALIFICATION TEST REQUIREMENTS 1/, 2/ (Page 2 of 2)

Notes:

1/ QCI testing to<u>MIL-PRF-19500</u>JANS or JANTXV requirements is acceptable for all quality levels.

2/ Samples shall be selected from parts that have passed the screening requirements in Table 2.

			Q	uantity (Accept n	umber) or LTPD	
		MIL-STD-750	Level 1	Le	evel 2	Level 3
			JANJ,	JANJ,		
Inspection/Test	Methods	Conditions	SCD,	SCD,	Commercial	SCD,Mfg. HI-
				Mfg.HI-		REL,
				REL		Commerci al
Subgroup 1		Separate samples may be used for each test.	6 (0)	4 (0)	4 (0)	Not Required
Physical Dimensions	2066	Dimensions in accordance with	0	0	0	
		specified case outline. In case				
		of failure, 100% dimensional				
Calderahility		inspection shall be performed.			0	
Solderability	2026				0	
Resistance to Solvents	1022		0	0	0	
Subgroup 2			6 (0)	Not	Not	Not
Decap-Internal Visual	2075		0	Required	Required	Required
SEM	2077	Die with expanded metallization contacts or metallization interconnects.	0			
Bond Strength	2037	All wire bonds.	0			
Die Shear	2017		0			
Subgroup 3			6 (0)	Not	Not	Not
Intermittent Operation	1037	2,000 cycles.	0	Required	Required	Required
Life Test	or					
	1042	For Power MOSFETs Cond. D,	0			
		2,000 cycles.				
Electrical Measurement		As specified in Table 4A	0			
		herein.				

Table 3A TRANSISTOR QUALIFICATION TEST REQUIREMENTS 1/, 2/ (Page 1 of 2)

			G	uantity (Accept nu	umber) or LTPD	
		MIL-STD-750	Level 1	Le	evel 2	Level 3
			JANJ,	JANJ, SCD,		SCD, Mfg.
Inspection/Test	Methods	Conditions	SCD	Mfg. HI-REL	Commercial	HI-REL,
						Commercial
Subgroup 4			12 (0)	Not	Not	Not
Accelerated Steady	1027	For eutectic die attached device, TJ	0	Required	Required	Required
State Life Test		= +275°Cfor 96 hours minimum.				
		For soft solder die attached				
		device, TJ = +225°Cfor 168	0			
		hours minimum.				
	1042	For Power MOSFETs, 3/	0			
		1)Reverse bias, Cond. A,				
		TA = +175℃, VDS = Rated,				
		24 hours.				
		2)Gate Stress, Cond. B,				
		IA = + 175 C, VGS = Rated 24 hours				
Electrical Measurement		As specified in Table 2C herein.	0			
			aa (a)	(2 (2)	22 (2)	Net
Subgroup 5			22 (0)	12 (0)	22 (0)	Not Required
Steady State Life Test	1026	TJ = Max Operating TJ	0	0	0	
		1,000 hours min.				
		As an ariffed in Table OO hars's				
Electrical Measurement		As specified in Table 2C herein.	0	0	0	

Table 3A TRANSISTOR QUALIFICATION TEST REQUIREMENTS 1/, 2/ (Page 2 of 2)

Notes:

1/ QCI testing to<u>MIL-PRF-19500</u>JANS or JANTXV requirements is acceptable for all quality levels.

2/ Samples shall be selected from parts that have passed the screening requirements in Table 2

3/ Electrical measurements shall be performed after the reverse bias life test and before the gate stress life test.

7. SEMICONDUCTOR DEVICES, DISCRETE

8: CAPACITORS

				Failure F	Rate Level (FRL) Required 1/	
Part Family		Capacitor Style and Type	Reference Specification	Level 1	Level 2	Level 3
Ceramic						
	ESCC3009	Chip,Ceramic	ESCC3009	0	0	0
	CCR	Encapsulated, Temp. Compensating	MIL-PRF-20	S 2/	R 3/	Р
	CKR	Encapsulated, Established Reliability	MIL-PRF-39014	2/	S 2/	R
	CKS	Encapsulated&Chip,HighReliability	MIL-PRF-123	0	0	0
		(Space Level)				
	CDR	Chip, Established Reliability	MIL-PRF-55681	S 2/	R 2/	Р
	HVR	HighVoltage,Leaded	MIL-PRF-49467	S	R	Р
	PC	Variable(Non-ER)	MIL-PRF-14409	2/	2/	0
	CV	Variable(Non-ER)	MIL-PRF-81	2/	2/	0
	CPC	SinglePlate	MIL-C-49464	S	R	Р
	PS	SwitchModePowerSupply	MIL-PRF-49470	Т	В	В
Tantalum	ESCC3003	Non-solidtantalum,Electrolytic	ESCC3003	0	0	0
	ESCC3002	Solidtantalum, Electrolytic	ESCC3002	0	0	0
	CSR	SolidElectrolyte	MIL-PRF-39003	C 2/	В	В
	CSS	SolidElectrolyte	MIL-PRF-39003	С	В	В
	CWR	Chip(SolidElectrolyte)	MIL-PRF-55365	C 2/	В	В
	CLR	Non-SolidElectrolyte	MIL-PRF-39006	R	Р	Р
Mica	ESCC3007	Міса	ESCC3007	0	0	0
	CMS	Fixed,HighReliability(Space)	MIL-PRF-87164	0	0	0
	CMR	Fixed,EstablishedReliability	MIL-PRF-39001	2/	2/	R

Table 1 CAPACITOR REQUIREMENTS (Page 1 of 2)

Notes at end of table.

			Failure		
Part Family	Capacitor Style and Type	Reference Specification	Level 1	Level 2	Level 3
Paper or Plastic					
Film	ESCC3006 Super Metalized Plastic Film	ESCC3006	0	0	0
	CQR Foil,HermeticallySealed	MIL-PRF-19978	2/	2/	R
	CHR Metallized,HermeticallySealed,	MIL-PRF-39022	2/	2/	R
	DC and AC				
	CHS Supermetallized,HermeticallySealed,DC	MIL-PRF-87217	0	0	0
	CRH Metallized,HermeticallySealed,	MIL-PRF-83421	R	R	R
	DC, AC, or DC and AC				
Glass					
	CYR EstablishedReliability	MIL-PRF-23269	S	R	Р
Commercial, High					
Rel, or SCD					
	All Types (Ceramic, Tantalum, Glass, Paper,	N/A	4/	4/	4/
	Plastic, etc.) 3/				

Table 1 CAPACITOR REQUIREMENTS (Page 2 of 2)

Notes:

- 1/ The FRL letters indicate use "as is" for the specified grade level. When capacitors can be purchased to acceptable specifications which do not include FRLs, an "O" indicates use "as is." FRLs are not applicable (N/A) for capacitors procured to SCDs or commercial capacitors.
- 2/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (military or SCD) need not be repeated. However, lot-specific attributes data for screening tests, and lot-specific or generic attributes data as applicable to various test groups of qualification tests, must be submitted to show that tests were performed with acceptable results.

- 3/ The construction of commercial parts may not be as robust as equivalent military parts.
- 4/ Capacitors shall meet the screening and qualification requirements of Tables 2 and 3. Any test required by Tables 2 and 3 that is already performed by the procurement specification (ESCC, military or SCD) need not be repeated. However, lot-specific attributes data for screening tests, and lot-specific or generic attributes data as applicable to various test groups of qualification tests, must be submitted to show that tests were performed with acceptable results.

												Part [·]	Type/	Level									
Inspec	ction/Test	Test Methods, Conditions, and Requirements 1/	Ce	eramic	;	P	lastic		Tant	talum	1		Glass	6	ſ	Vica		Var	iable	9	S' M Po	witch ode ower	
			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
1. a.Visu M E. b. Elect M (S da re	aland lechanical xamination trical leasurements See step 6 for etails of tests equired and test onditions)	Visual and sample based mechanical inspection to be performed to requirements of nearest military specification	0	0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0
2. Therm	nalShock	MIL-STD-202, Method 107, Condition B, min. rated temp. to max. rated temp. (when specified in the product specification/ data sheet, the min. and max. "storage" temp. shall be used in lieu of the specified operating temp.)	0	0		0	0		0	0		C	D C)	0	0		0	0		0	0	

Table 2 CAPACITOR SCREENING REQUIREMENTS (Page 1 of 4)

Notes at end of table.

		Part Type/Level																				
	Test Methods,																			S١	vitch	
	Conditions, and																			M	ode	
Inspection/Test	Requirements 1/	Cer	amic		F	Plastic	;	Tar	ntalun	n		Glass	i		Mica		Va	riable	9	Po	wer	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
3. Voltage Conditioning	2 x rated voltage, 2/																					
(Burn-In)	125 °C, 160 hours	0												0						0		
	125 °C, 96 hours		0												0						0	
	125 °C, 48 hours			0												0						0
	140% rated voltage,				0	0	0										0	0				
	125°C or max rated																					
	temp. whichever is less,																					
	48 hours																					
	Rated voltage, 85 °C																					
	160 hours							0														
	96 hours								0													
	48 hours									0												
	1500 Vdc (for parts										0	0										
	rated≥300 Vdc);																					
	4x rated voltage (for																					
	parts rated <300 Vdc);																					
	room temp., 48 hours																					
4. SurgeCurrent3/	-55 °C to 85 °C 3/							0														
	<u>25 °C 3/</u>								0	0												
5. High Impedance temp. and	5 cycles, -55 °C to 100				0	0																
voltage ramp 4/	°C in accordance with																					
	<u>MIL-PRF-87217</u>																					

Table 2 CAPACITOR SCREENING REQUIREMENTS (Page 2 of 4)

Notes at end of table.

Table 2 CAPACITOR	SCREENING	REQUIREMENTS	(Page 3	of	4)
-------------------	-----------	--------------	---------	----	----

					Part Type/Level	-		-
	Test Methods,							Switch
Inspection/Test	Conditions, and							Mode
	Requirements 1/	Ceramic	Plastic	Tantalum	Glass	Mica	Variable	Power
		1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3
6. Electrical Measurements	As specified 5/							
Capacitance	MIL-STD-202,	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	Method 305							
Dissipation Factor	MIL-STD-202,	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	Method 305							
DWV	MIL-STD-202, Method	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	301							
Insulation Resistance 1	MIL-STD-202, Method	0 0 0	0 0 0		0 0	0 0 0	0 0 0	0 0 0
	302, room temp.							
Insulation Resistance 2	Repeat at max. rated	0	0		0	0	0	0
	temp.							
DC Leakage 1	MIL-STD-202, Method			0 0 0				
	301							
DC Leakage 2	Repeat at 85 °C			0 0				
Equivalent Series				0 0				
Resistance								
Quality Factor							0 0 0	
Driving Torque							0 0	
7. Percent Defective	5%	0	0	0	0	0	0	0
Allowable	10%	0	0	0	0	0	0	0
	20%	0	0	0	0	0	0	0
8. Partial Discharge 6/	MIL-PRF-49467	0 0						
	Appendix B							
9. Seal Test (Hermetic Types	MIL-STD-202,							
Only)	Method112							
Gross Leak	ConditionAorB		0 0	0 0				
Fine Leak	ConditionC		0	0				

Table 2 CAPACITOR SCREENING REQUIREMENTS (Page 4 of 4)

		PartTvpe/Level																				
	Test Methods,																			Swit	ch Mo	ode
Inspection/Test	Conditions, and Requirements 1/	Ceram	ic		Plas	tic		Tanta	alum		G	Slass		N	/lica		Var	iable	9	Pow	er Su	oply
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
10. Radiographic Inspection	MSFC-STD-355C	0			0			0						0			0			0		
11. Visual and Mechanical Examination	Dimensions, Marking, Work- manship	0	0		0	0		0	0		0	0		0	0		0	0		0	0	
12. Humidity Steady State, Low Voltage 7/	MIL-STD-202, Method 103, Condition A and MIL-PRF-123, Group B	12(0)	5(0)																	5(0)	5(0)

Notes:

- 1/ User should refer to the nearest equivalent military specification listed in Table 1 if required for better definition of testing requirements.
- 2/ For high voltage capacitors (>500 V) that have unique requirements based on rated voltage, refer to the nearest equivalent military specification listed in Table 1.
- 3/ Solid tantalum capacitors are susceptible to failure when subjected to current surges. Therefore, surge current testing, as described below is required for solid tantalum capacitor styles used in level 1, 2, and 3 applications. Surge current testing is not applicable to wet tantalum capacitor styles.
 - a) Level 1 applications shall use the surge current test method from <u>MIL-PRF-39003/10(-55</u> °C and +85 °C) for leaded devices and <u>MIL-PRF-55365/4(-55</u> °C and +85 °C, Option B) for chips.
 - b) Level 2 and Level 3 applications shall use the surge current test method from<u>MIL-PRF-39003/9(25 °C)</u> for leaded devices and MIL-<u>PRF-55365/4</u> (+25°C, option A) for chips.

- 4/ Required only for metallized polycarbonate low energy, high impedance capacitors similar to those specified by <u>MIL-PRF-87217</u>.
- 5/ It is the responsibility of the user to define minimum and maximum values for each parameter (pass/fail criteria) and delta criteria, if applicable. These values should be based on the nearest equivalent military specification, manufacturer specifications, or the application, whichever is most stringent.
- 6/ Partial Discharge testing is required only for high voltage capacitors similar to those specified by <u>MIL-PRF-49467</u> rated at 1,000 volts and higher. This test requirement may affect capacitor design and should be performed by the manufacturer. If performed by the user, it could result in a high probability of failure.
- 7/ Humidity, Steady State, Low Voltage testing is required only for non-ESCC QPL or non-MIL QPL/QML, not qualified range of values, ceramic capacitors if its rated voltage<50V and C>1uF.

Table 3A CERAMIC CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 1 of 3)

		Quanti	ty (Accept Number)	
Inspection/Test	Test Methods, Conditions, and		Level	
	Requirements 2/	1	2	3
Group 1	Use parts that have passed screening tests of Table 2.	100%	100%	N/A
Screening to Table 2		0	0	
Group 2		12(1)	6(1) O 5/	N/A
Limits	Capacitance change over the range of temperatures and voltages specified shall not exceed limits of	0	0.5/	
Temperature Coefficient and Drift	Capacitance change over the range of temperatures specified shall not exceed limits of specification.	0	O 5/	
Group 3 Terminal Strength 3/	MIL-STD-202, Method 211	12(0) O	6(1) O	N/A
	Condition A (all leaded devices) Condition C (radial leaded and DIP devices only) Condition D (axial leaded devices only)			
Resistance to Solder Heat (N/A to variable devices)	MIL-STD-202, Method 210 Condition C (chips), Condition G (leaded) IR,ΔC and DF to specification	0	0	
Moisture Resistance	MIL-STD-202, Method 106 20 cycles (first 10 cycles with Vrated applied) DWV, IR and∆C to specification	0	O(0)	
Fatigue (Variable devices)	100 cycles in 5 minutes	0	0	

Notes at end of table.

Table 3A CERAMIC CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 3)

		Quanti	ty (Accept Number)	
Inspection/Test	Test Methods, Conditions, and		Level	
	Requirements	1	2	3
Group 4		12(0)	5(0)	N/A
Humidity Steady State,	MIL-STD-202, Method 103, Condition A and MIL-PRF- 123,	0	0	
Low Voltage 4/	Group B			
Group 5		5(0)	3(0)	N/A
Solderability	MIL-STD-202, Method 208	0	0	
Destructive Physical Analysis	EIA-469	0		
Group 6		44(0) or 22(0)	44(0) or 22(0)	N/A
Life	MIL-STD-202, Method 108	0	0	
(at elevated temp.) 5/	Ttest = maximum operating temperature			
	Vtest = 2 x Vrated			
	Duration: 2000 hours for level 1,			
	1000 hours for levels 2 and 3			
	$IR,\Delta C$, and DF to specification			
Partial Discharge 6/	MIL-PRF-49467 Appendix B	о	0	

Notes at end of table.

Table 3A CERAMIC CAPACITOR QUALIFICATION REQUIREMENTS (Page 3 of 3)

Notes:

- 1/ Qualification shall consist of the tests specified in Table 3A in the order as shown. All parts submitted for qualification testing shall have passed screening tests as described in Table 2. These sample units shall then be divided as shown in Table 3A for Groups 2 through 5 and subjected to the tests for their particular group.
- 2/ It is the responsibility of the user to specify the appropriate test conditions and define the pass/fail criteria for each inspection in detail specification. These values shall be based on the nearest equivalent ESCC or military specification, the manufacturer's specification, or the application, whichever is most severe. Refer to Table 1 for the nearest equivalent military specification.
- 3/ This test is not applicable to chip capacitors.
- 4/ Humidity, Steady State, Low Voltage testing is required only for non-ESCC QPL or non-MIL QPL/QML, not qualified range of values, ceramic capacitors if its rated voltage<50V and C>1uF.
- 5/ When qualifying a range of capacitance values and voltage ratings, quantities for the life test group shall be selected as follows:

Qualifying	Select		
A single value and voltage rating:	22 parts of the same value and voltage rating		
A range of values in a single voltage rating:	11 parts of the highest value and 11 parts of the lowest value in the range		
A range of values in a range of voltage ratings:	11 parts of the highest value and 11 parts of the lowest value in the highest		
	voltage rating, AND 11 parts of the highest value and 11 parts of the lowest value		
	in the lowest voltage rating		

6/ Partial Discharge testing is required only for high voltage capacitors similar to those specified by <u>MIL-PRF-49467</u> rated at 1000 volts and higher. This test requirement may affect capacitor design and should be performed by the manufacturer. If performed only by the user, it could result in a false identification of defective parts.

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and	Level		
	Requirements 2/	1	2	3
Group 1	Use parts that have passed screening tests of Table 2.	100%	100%	100%
Screening to Table 2		0	0	N/A
Group 2 Shock (Cavity devices only) 3/	MIL-STD-202, Method 213 Wet slugs Levels 1 and 2: Cond. D (500 Gs) Level 3: Cond. I (100 Gs)	12(0) O	6(1) O	N/A
	Dry slugs Levels 1, 2, and 3: Cond. I (100 Gs)			
Vibration, High Frequency (Cavity devices only) 3/	Intermittent contacts greater than 0.5 ms shall be cause for rejection. MIL-STD-202, Method 204 Two axes, 4 hours each axis	0	0	
	Levels 1 and 2: Cond. H (80 Gs) Level 3: Cond. D (20 Gs)			
	Dry slugs Levels 1, 2, and 3: Cond. D (20 Gs)			
Vibration, Random (Wet slug styles only) 3/	Intermittent contacts greater than 0.5 ms shall be cause for rejection. DCL, Δ C and DF to specification. MIL-STD-202, Method 214 Condition IIK for 1.5 hours in each of three mutually perpendicular directions.	0	0	
	Intermittent contacts greater than 0.5 ms shall be cause for rejection. DCL, Δ C and DF to specification.			

Table 3B TANTALUM CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 1 of 4)

Notes at the end of table.
Table 3B TANTALUM CAPACITOR QUALIFICATION REQUIREMENTS 1/, 2/ (Page 2 of 4)

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and	Level		
	Requirements 2/	1	2	3
Group 3		5(0)	3(0)	N/A
Solderability 3/	MIL-STD-202, Method 208	0	0	
Terminal Strength	MIL-STD-202, Method 211	0	0	
	Condition A			
	Condition B			
Group 4		12(1)	6(1)	N/A
Resistance to Solvents	MIL-STD-202, Method 215	0	O 4/	
Resistance to Solder Heat	MIL-STD-202, Method 210	0	O 4/	
	Condition C (chips), Condition G (leaded)			
	IR, ΔC and DF to specification			
Moisture Resistance	MIL-STD-202, Method 106	0	O 4/	
	20 cycles (first 10 cycles with 6 Vdc applied)			
	DWV, IR and ΔC to specification			

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and	Level		
	Requirements 2/	1	2	3
Group 5		12(1)	6(1)	N/A
Stability at Low and High	In accordance with MIL-PRF-39003	0	0	
Temperature	DCL, C, and DF shall be within specification at the			
	applicable test temperature.			
Surge Voltage	Wet slugs	0	0	
	In accordance with MIL-PRF-39006			
	Dry slugs			
	In accordance with MIL-PRF-39003			
	Chips			
	In accordance with MIL-PRF-55365			
	Vtest = Reverse voltage rating (Vdc)	0	0	
Reverse Voltage (Polarized	Ttest = 85 °C			
wet slug styles only)	Duration: 125 hours level 1			
	48 hours level 2			
	DCL, ΔC and DF to specification			

Table 3B TANTALUM CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 3 of 4)

Group 6		44(0) or 22(0) X	44(1) or 22(1) X	N/A
Life 5/	MIL-STD-202, Method 108			
(at elevated temp.) (Dry	Ttest = 85 °C			
slug styles only)	Vtest = Vrated			
	Duration: 2000 hours for level 1			
	1000 hours for level 2			
	DCL, ΔC and DF to specification	0	0	
AC Ripple Life	MIL-STD-202, Method 108			
(Wet slug styles only)	Ttest = 85 °C			
	Vtest = Vrated + Rated Ripple Current at 40 kHz			
	Duration: 2000 hours for level 1			
	1000 hours for level 2			
	$DCL,\Delta C$ and DF to specification			

Table 3B TANTALUM CAPACITOR QUALIFICATION REQUIREMENTS (Page 4 of 4)

- 1/ Qualification shall consist of the tests specified in Table 3B in the order as shown. All parts submitted for qualification testing shall be subjected to screening tests. These sample units shall then be divided as shown in Table 3B for Groups 2 through 6 and subjected to the tests for their particular group.
- 2/ It is the responsibility of the user to specify the appropriate test conditions and define the pass/fail criteria for each inspection in detail specification. These values shall be based on the nearest equivalent ESCC or military specification, the manufacturer's specification, or the application, whichever is most severe. Refer to Table 1 for the nearest equivalent military specification.
- 3/ This test is not applicable to chip capacitors.
- 4/ Generic data is an acceptable basis for qualification for the indicated tests.
- 5/ When qualifying a range of capacitance values and voltage ratings, quantities for the life test group shall be

Qualifying	Select
A single value and voltage rating:	22 parts of the same value and voltage rating
A range of values in a single voltage rating:	11 parts of the highest value and 11 parts of the lowest value in the range
A range of values in a range of voltage ratings:	11 parts of the highest value and 11 parts of the lowest value in the highest
	voltage rating, AND 11 parts of the highest value and 11 parts of the lowest
	value in the lowest voltage rating

Table 3C PLASTIC FILM CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 1 of 3)

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and	Level		
	Requirements 2/	1	2	3
Group 1		100%	100%	N/A
Screening to Table 2	Use parts that have passed screening tests of Table 2.	0	0	
Group 2 Vibration, High	MIL-STD-202, Method 204	12(0) O	6(0) O	N/A
Frequency	Levels 1 and 2: Condition F (50 Gs)			
(Cavity devices only)	Level 3: Condition D (20 Ge)			
	Two axes, 4 hours each axis Vtest = 0.5 x Vrated + 1.0 Vrms at 1 kHz Intermittent contacts greater than 0.5 ms shall be cause for rejection.			
Group 3		12(0)	6(0)	N/A
Shock	MIL-STD-202, Method 213	0	0	
(Cavity devices only)	Condition I Vtest = 0.5 x Vrated Intermittent contacts greater than 0.5 ms shall be cause for rejection.			
Resistance to Solder Heat	MIL-STD-202, Method 210 Condition G IR,ΔC and DF to specification	0	0	
Moisture Resistance	MIL-STD-202, Method 106 Vtest = Vrated (100 Vdc maximum) for 50% of parts. Vibration is applicable during step 7. DWV, IR, Δ C and DF to specification	0	Ο	
	MIL-STD-202, Method 103 Condition B, no bias DWV, IR and ΔC to specification			

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and	Level		I
	Requirements 2/	1	2	3
Group 4		5(0)	3(0)	N/A
Solderability	MIL-STD-202, Method 208	0	0	
Terminal Strength 3/	MIL-STD-202, Method 211	0	0	
	Condition A (all leaded devices) and:			
	Condition C (radial leaded devices only)			
	Condition D (axial leaded devices only)			
Resistance to Solvents	MIL-STD-202, Method 215	0	0	
Group 5		44(0) or 22(0)	44(1) or 22(1)	N/A
Temperature Coefficient	Capacitance change over the range of temperatures	0		
	specified shall not exceed limits of specification. MIL-			
Life	STD-202, Method 108	0	0	
(Accelerated)	Ttest = 100 °C			
	Vtest = 1.4 x Vrated			
	Duration: 2000 hours for level 1			
	1000 hours for levels 2 and 3			
	IR,ΔC, and DF to specification			
Group 6		6(0)	N/A	N/A
Vibration, Random	MIL-STD-202, Method 214	0		
(Hermetically sealed	Condition IIK for 15 minutes in each of two mutually			
styles only) 3/	perpendicular directions.			
	Vtest = 1 Vrms at 1 kHz			
	Intermittent contacts greater than 0.5 ms shall be			
	cause for rejection			
	DCL, Δ C and DF to specification			

Table 3C PLASTIC FILM CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 3)

Table 3C PLASTIC FILM CAPACITOR QUALIFICATION REQUIREMENTS (Page 3 of 3)

- 1/ Qualification shall consist of the tests specified in Table 3C in the order as shown. All parts submitted for qualification testing shall be subjected to screening tests. These sample units shall then be divided as shown in Table 3C for Groups 2 through 6 and subjected to the tests for their particular group. The user must subject an appropriate number of samples to screening tests to meet the PDA requirement and still have enough passing samples for Groups 2 through 6.
- 2/ It is the responsibility of the user to specify the appropriate test conditions and define the pass/fail criteria for each inspection in detail specification. These values shall be based on the nearest equivalent military specification, the manufacturer's specification, or the application, whichever is most severe. Refer to Table 1 for the nearest equivalent military specification.
- 3/ This test is not applicable to chip capacitors.
- 4/ When qualifying a range of capacitance values and voltage ratings, quantities for the life test group shall be selected as follows:

Qualifying	Select
A single value and voltage rating:	22 parts of the same value and voltage rating
A range of values in a single voltage rating: A range of values in a range of voltage ratings:	11 parts of the highest value and 11 parts of the lowest value in the range11 parts of the highest value and 11 parts of the lowest value in the highest voltagerating, AND 11 parts of the highest value and 11 parts of the lowest value in the
	lowest voltage rating

Table 3D MICA CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 1 of 3)

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and		Level	Γ
	Requirements 2/	1	2	3
Group 1		100%	100%	
Screening to Table 2	Use parts that have passed screening tests of Table 2.	0	0	N/A
Group 2		6(0)	3(0)	N/A
Solderability	MIL-STD-202, Method 208	0	0	
Vibration, High Frequency	MIL-STD-202, Method 204	0	0	
	Condition B (15 Gs)			
	Intermittent contacts greater than 0.5 ms shall be cause for			
	rejection.			
Vibration, Random	MIL-STD-202 Method 214	0	0	
	Condition E of Table 214E-II			
	Three axes for 1.5 hours each axis.			
	No intermittent contacts in excess of 0.5 ms during final 30 minutes			
Tampanetus Castiniant	of each axis.			
and Drift	Capacitance change over the range of temperatures specified shall	0		
	not exceed limits of specification.			
Thermal Shock	MIL-STD-202, Method 107	0	0	
	Condition B			
	except Tmax = maximum operating temperature			
	Tmin = minimum operating temperature			
	Level 1: 25 cycles			
	Level 2: 10 cycles			
	Level 3: 5 cycles			
	DWV, IR, Δ C, C and DF to specification			

		Quantity (Accept Number)			
Inspection/Test	Test Methods, Conditions, and		Level		
	Requirements 2/	1	2	3	
Group 3		12(0)	6(1)	N/A	
Shock 2/	MIL-STD-202, Method 213	0	0		
	Condition I (100 Gs)				
	Intermittent contacts greater than 0.5 ms shall be cause for				
	rejection.				
Terminal Strength 2/, 3/	MIL-STD-202, Method 211	0	0		
	Condition A				
	Condition D				
Resistance to Solder Heat 2/	MIL-STD-202, Method 210	0	0		
	Condition G				
	IR,∆C and DF to specification				
Moisture Resistance 2/	Risk Levels 1 and 2:				
	MIL-STD-202, Method 106	0	O (0)		
	Apply Vrated (100 V maximum) to 50% of test parts.				
	Vibration step not applicable.				
	IR, ΔC and DF to specification				
Group 4 6/		44(0) or 22(0) X	44(1) or 22(1) X	N/A	
Life 2/, 4/	Precondition parts at –55 °C for 48 hours minimum.				
(Accelerated condition)	Ttest = maximum operating temperature				
	Vtest = 1.5 x Vrated				
	Duration: 2000 hours for level 1				
	1000 hours for levels 2 and 3				
	DWV, IR, ΔC and DF to specification				
Group 5		5(0)	5(0)	N/A	
Resistance to Solvents 2/	MIL-STD-202, Method 215	0	0		

Table 3D MICA CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 3)

Table 3D MICA CAPACITOR QUALIFICATION REQUIREMENTS (Page 3 of 3)

- 1/ Qualification shall consist of the tests specified in Table 3D in the order as shown. All parts submitted for qualification testing shall be subjected to screening tests. These sample units shall then be divided as shown in Table 3D for Groups 2 through 5 and subjected to the tests for their particular group. The user must subject an appropriate number of samples to screening tests to meet the PDA requirement and still have enough passing samples for Groups 2 through 5.
- 2/ It is the responsibility of the user to specify the appropriate test conditions and define the pass/fail criteria for each inspection in detail specification. These values shall be based on the nearest equivalent military specification, the manufacturer's specification, or the application, whichever is most severe. Refer to Table 1 for the nearest equivalent military specification.
- 3/ This test is not applicable to chip capacitors.
- 4/ When qualifying a range of capacitance values and voltage ratings, quantities for the life test group shall be selected as follows:

Qualifying	Select
A single value and voltage rating:	22 parts of the same value and voltage rating
A range of values in a single voltage rating:	11 parts of the highest value and 11 parts of the lowest value in the range
A range of values in a range of voltage ratings:	11 parts of the highest value and 11 parts of the lowest value in the highest
	voltage rating, AND 11 parts of the highest value and 11 parts of the lowest
	value in the lowest voltage rating

Table 3E GLASS CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 1 of 3)

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and	Level		
	Requirements 2/	1	2	3
Group 1		100%	100%	N/A
Screening to Table 2 1/ 2/	Use parts that have passed screening tests of Table 2.	0	0	
Group 2		12(0)	6(1)	N/A
Thermal Shock 2/	MIL-STD-202,Method 107	0	0	
	Condition B			
	IR, C, Δ C and DF to specification			
Quality Factor 2/	MIL-STD-202, Method 306	0	0	
Shock 2/	MIL-STD-202, Method 213	0	0	
	Condition I (100 Gs)			
	Intermittent contacts greater than 0.5 ms shall be cause			
	for rejection.			
Vibration, High	MIL-STD-202, Method 204	0	0	
Frequency 2/	Condition D (20 Gs)			
	Intermittent contacts greater than 0.5 ms shall be cause			
	for rejection.			
Group 3		12(1)	6(1)	N/A
Solderability 2/	MIL-STD-202, Method 208	O (1)	0	
Terminal Strength 2/	MIL-STD-202, Method 211	O (0)	0	
	Condition A (all leaded devices) and:			
	Condition C (radial leaded devices only)			
	Condition D (axial leaded devices only)			
Temperature Coefficient	Capacitance change over the range of temperatures	O (0)	O 3/	
and Drift 2/	specified shall not exceed limits of specification.			

Table 3E GLASS CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 3)

		Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and	Risk Level		
	Requirements 2/	1	2	3
Group 4		12(1)	6(1)	N/A
Resistance to Solvents 2/	MIL-STD-202, Method 215	0	O 3/	
Resistance to Solder Heat	MIL-STD-202, Method 210	0	0	
2/	Condition G			
	IR, ΔC and DF to specification			
Moisture Resistance 2/	MIL-STD-202, Method 106	O (0)	O (0)	
	20 cycles (first 10 cycles with 100 Vdc applied)			
	IR, C, Δ C and DF to specification			
Group 5 5/		44(0) or 22(0)	44(1) or 22(1)	N/A
Life 2/, 4/	MIL-STD-202, Method 108	0	0	
(Accelerated condition)	Ttest = 125°C			
	Vtest = 1.5 x Vrated			
	Duration = 2000 hours for level 1			
	1000 hours for levels 2 and 3			
	IR, ΔC and DF to specification			

Table 3E GLASS CAPACITOR QUALIFICATION REQUIREMENTS (Page 3 of 3)

- 1/ Qualification shall consist of the tests specified in Table 3E in the order as shown. All parts submitted for qualification testing shall be subjected to screening tests. These sample units shall then be divided as shown in Table 3E for Groups 2 through 5 and subjected to the tests for their particular group. The user must subject an appropriate number of samples to screening tests to meet the PDA requirement and still have enough passing samples for Groups 2 through 5.
- 2/ It is the responsibility of the user to specify the appropriate test conditions and define the pass/fail criteria for each inspection in detail specification. These values shall be based on the nearest equivalent military specification, the manufacturer's specification, or the application, whichever is most severe. Refer to Table 1 for the nearest equivalent military specification.
- 3/ Generic data is an acceptable basis for qualification for the indicated tests.
- 4/ When qualifying a range of capacitance values and voltage ratings, quantities for the life test group shall be selected as follows:

Qualifying	Select		
A single value and voltage rating:	22 parts of the same value and voltage rating		
A range of values in a single voltage rating:	11 parts of the highest value and 11 parts of the lowest value in the range		
A range of values in a range of voltage ratings:	11 parts of the highest value and 11 parts of the lowest value in the highest voltage rating. AND 11 parts of the highest value and 11 parts of the lowest		
	value in the lowest voltage rating		

9 : C R Y S T A L S

Pro	curement Specification	Use As Is	Screen to Table 2 2/	Qualify to Table 3 2/
Level 1				
1)	ESCC3501,LevelB	0		
2)	MIL-PRF-30981/		O 3/	
3)	SCD4/,5/			0
Level 2				
1)	ESCC3501,LevelB	0		
2)	MIL-PRF-30981/	0		
3)	SCD4/		0	0
4)	Commercial		0	0
Level 3				
1)	ESCC3501,LevelB	0		
2)	MIL-PRF-30981/	0		
3)	SCD or Commercial		0	

Table 1 REQUIREMENTS FOR CRYSTALS

- 1/ MIL-PRF-3098, Crystal Units, Quartz, General Specification for, has no provision for radiation hardness. If radiation hardness is a requirement for the success of the mission, parts must be procured to a specification control drawing (SCD) that includes the requirement for radiation testing to the specified total dose. Also, only parts using at least a three point mount shall be used.
- 2/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (military or SCD) need not be repeated. However, lot specific attributes data for screening tests, and lot specific or generic attributes data as applicable to various test groups of qualification tests must be submitted to show that tests were performed with acceptable results.
- 3/ MIL-PRF-3098 does not require 100% conformance testing of all parts in a lot. Also, the specification does not require PIND testing. Therefore, all parts procured to a MIL-PRF-3098 part number must be screened to the requirements of Table 2 before use in a Level 1 application unless lot specific attributes data is obtained from the manufacturer.
- 4/ All SCDs must be written in accordance with the requirements of ESCC 3501 or MIL-PRF-3098 with Tables 2 and 3 of this section, and

contain the following design requirements: crystals shall be swept synthetic quartz meeting the infrared quality requirements of grade A or B of <u>IEC60758</u>;and shall be mounted with at least a three point mount. The full title of the IEC document is Synthetic Quartz Crystal – Specifications and Guide to the Use, IEC60758(1993-04), International Electrotechnical Commission, Geneva, Switzerland.

4.1/ The IEC specification lists six levels of infrared quality, which are designated from Aa (the best) to E (the worst). A and B are the levels that several prominent oscillator manufacturers recommend for space and military applications. Infrared quality is an indirect measure of the level of impurities in a crystal. Impurities can affect frequency aging characteristics

Table 2 SCREENING REQUIREMENTS FOR CRYSTALS

	Test Methods and	Level 1	Level 2		Level 3
Inspection/Test	Conditions 1/ 2/	SCD	SCD	Commercial	SCD or
					Commercial
1. Internal visual inspection	MIL-PRF-3098, paragraph 4.7.2.2	6(0)	6(0)	6(0) 2/	4(0) 2/
2. External visual and	MIL-PRF-3098, paragraph 4.7.2	0	0	0	0
mechanical inspection 4/					
3. Low temperature storage	MIL-PRF-3098, paragraph 4.7.8.4	0	0	0	0
4. Frequency and equivalent	MIL-PRF-3098, paragraph 4.7.8	0	0	0	0
resistance					
Frequency stability	MIL-PRF-3098, paragraph 4.7.8.2				
(controlled)					
()					
Operable temperature	MIL-PRF-3098, paragraph 4.7.8.3				
	···· ··· ··· ·························				
					-
5. Capacitance shunt (when	MIL-PRF-3098, paragraph 4.7.7	0	0	0	0
6. Unwanted modes	MIL-PRF-3098, paragraph 4.7.9	0	0	0	0
7. Seal	MIL-PRF-3098, paragraph 4.7.11	0	0	0	0
8. Accelerated aging	MIL-PRF-3098, paragraph 4.7.14.1	0	0	0	0
9. PIND	MIL-STD-883, Method 2020	0	0	0	0
10. Radiographic inspection	MIL-STD-202, Method 209, view 1 in Y1	0	0	0	
	direction, second view 90° relative to				
	first view				
11. Percent defective		5	10	10	10
allowable (PDA)					
		1			

- 1/ It is the responsibility of the user to specify detailed test conditions and define pass/fail criteria for each test. These values shall be based on the nearest equivalent military specifications, the manufacturer's specification, or the application, whichever is more severe.
- 2/ Except for internal visual inspection, screening will be performed on all parts in the lot.

- 3/ In lieu of interval visual, DPA shall be performed to the requirements of <u>S-311-M-70</u> specification.
- 4/ Pure Tin finish is prohibited as a final finish on EEE parts.

		Level 1	Le	evel 2	Level 3
Inspection/Test Test Methods and Conditions		SCD	SCD	Commercial	SCD or Commercial
Subgroup I		10(0)	10(0)	10(0)	10(0)
Visual and mechanical inspection	MIL-PRF-3098, paragraph 4.7.2	0	0	0	0
Solderability	MIL-PRF-3098, paragraph 4.7.3	0	0	0	0
Shock (specified pulse)	MIL-PRF-3098, paragraph 4.7.4	0	0	0	0
Vibration	MIL-PRF-3098, paraoraph 4,7,5	0	0	0	0
Low temperature storage	MIL-PRF-3098, paragraph 4.7.8.4	0	0	0	0
Reduced drive level 2/	MIL-PRF-3098 paragraph 4.7.6	0	0	0	0
Frequency and equivalent resistance	MIL-PRF-3098, paragraph 4.7.8	0	0	0	0
Frequency stability (controlled)	MIL-PRF-3098, paragraph 4.7.8.2				
Operable temperature range (controlled)	MIL-PRF-3098, paragraph 4.7.8.3				
Capacitance shunt (when specified)	MIL-PRF-3098, paragraph 4.7.7	0	0	0	0
Unwanted modes	MIL-PRF-3098, paragraph 4.7.9	0	0	0	0
Thermal shock	MII -PRF-3098, paraoraph 4,7,10	0	0	0	0
Soal	MIL DEE 2008, paragraph 4 7 11	0	0	0	0
		0	0	0	0
Aging	MIL-PRF-3098, paragraph 4.7.14	0	0	0	0
Terminal strength	MIL-PRF-3098, paragraph 4.7.15	U	U	0	0

Table 3 QUALIFICATION TEST REQUIREMENTS FOR CRYSTALS 1/ (Page 1 of 2)

		Level 1	Level 2		Level 3
Inspection/Test	Test Methods and Conditions	SCD	SCD	Commercial	SCD or Commercial
Subgroup 1 (cont.)					
Visual and mechanical inspection	MIL-PRF-3098, paragraph 4.7.2.2	0	0	0	0
(internal)					
Bond strength (when specified)	MIL-PRF-3098, paragraph 4.7.16	0	0	0	0
Subgroup 2 3/					
Radiation hardness	MIL-STD-883, method 1019 4/	5(0)	5(0)	5(0)	5(0)
Total dose (when specified))					

Table 3 QUALIFICATION TEST REQUIREMENTS FOR CRYSTALS 1/ (Page 2 of 2)

- 1/ All parts submitted for qualification testing shall have successfully completed the screening per Table
- 2/ Applicable to overtone units, and when specified, fundamental units.
- 3/ Choose the samples from those successfully completing subgroup 1 tests.
- 4/ For total dose levels below 1 Mrad, the frequency shall be measured during the irradiation. The temperature of the crystal units shall be maintained at a turnover temperature. For total dose levels above 1 Mrad, the frequency and resistance shall be measured within 4 days following irradiation in accordance with paragraph 4.7.8 of MIL-PRF-3098.

10: CRYSTAL OSCILLATORS

Table 1 REQUIREMENTS FOR CRYSTAL OSCILLATORS 1/ 2/

Pro	curement Specification	Use As Is	Screen to Table 2 3/	Qualify to Table 3 3/
Level 1				
1)	ECSS-Q-60-05,Level1	0		
2)	MIL-PRF-55310,ClassS4/	0		
3)	MIL-PRF-55310,ClassB		0	
4)	SCD5/		0	0
Level 2				
1)	ECSS-Q-60-05,Level1	0		
2)	MIL-PRF-55310,ClassS	0		
3)	MIL-PRF-55310,ClassB		0	
4)	SCD5/		0	0
5)	Commercial		0	0
Level 3				
1)	ECSS-Q-60-05,Level1	0		
2)	MIL-PRF-55310,ClassS	0		
3)	MIL-PRF-55310,ClassB	0		
4)	SCDorCommercial		0	

Notes:

- 1/ Any oscillator must be evaluated or tested to determine it ability to meet the Total Ionizing Dose (TID) and Single Event Upset (SEU) requirements of the mission.
- 2/ Custom crystal oscillators, which employ hybrid microcircuit construction techniques, shall satisfy the element evaluation requirements of Section M2 herein. This requirement does not apply to oscillators that are standard parts available in a manufacturer's catalog.
- 3/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (ECSS, military or SCD) need not be repeated. However, lot specific attributes data for screening tests, and lot specific or generic attributes data as applicable to various test groups of qualification tests must be submitted to show that tests were performed with acceptable results.
- 4/ MIL-PRF-55310, Oscillator, Crystal Controlled, General Specification for.
- 5/ An SCD must be written in accordance with the requirements of MIL-PRF-55310 and contain the following design requirements:

10. CRYSTAL OSCILLATORS

Crystals shall be swept synthetic quartz, meeting the infrared quality requirements of grade A or B of Synthetic Quartz Crystal – Specifications and Guide to the Use, <u>IEC60758(1993-04)</u>, International Electrotechnical Commission, Geneva, Switzerland. Crystals shall be mounted with at least a three point mount; no parts shall be used that latch up in a Single Event Upset (SEU) environment; all active and passive parts shall be derated in accordance with the derating guidelines of MIL-STD-975, EEE-INST-002, or <u>ECSS-Q-ST-30-11</u>.

5.1/ The IEC specification lists six levels of infrared quality, which are designated from Aa (the best) to E (the worst). A and B are the levels that several prominent oscillator manufacturers recommend for space and military applications. Infrared quality is an indirect measure of the level of impurities in a crystal. Impurities can affect frequency aging characteristics.

Table 1A OSCILLATOR TYPES PER MIL-PRF-55310

Description	Type Number
Crystal Oscillators (XO)	1
Voltage Controller Crystal Oscillators (VCXO)	2
Temperature Compensated Crystal Oscillators(TCXO)	3
Oven Control Crystal Oscillators (OXCO)	4
Temperature Compensated-Voltage Controlled Crystal Oscillators (TCVCXO)	5
Oven Controlled Voltage Controlled Crystal Oscillators (OCVCXO)	6
Microcomputer Compensated Crystal Oscillators(MCXO)	7
Rubidium—Crystal Oscillators (RUXO)	8

Table 2 SCREENING REQUIREMENTS FOR CRYSTAL OSCILLATORS, DISCRETE COMPONENT CONSTRUCTION (Page 1 of 2)

	Test Methods and	Level	Level 1		Level 2		
Inspection/Test	Conditions 1/	Class B	SCD	Class B	SCD	Commercial	SCD or Commercial
1.Internal Visual Inspection			0		0	O 2/	O 2/
a.Soldering	NASA-STD-8739.3						
b.Workmanship	MIL-PRF-55310, paragraph 3.9						
2. Random Vibration	MIL-STD-202, Method 214, Condition I-B, 5 minutes per axis		0				
3. Thermal Shock	MIL-STD-202, Method 107, Condition A-1		0		0	0	
4. Pre Burn-in Electrical			0		0	0	0
Input Current—Power	MIL-PRF-55310, paragraph 4.8.5						
Output Waveform	Verify the type of output waveform.						
Output Voltage—Power	MIL-PRF-55310, paragraph 4.8.21						
5. Burn-in (Load)	Max. operating temperature. Nominal		240		160 hours	160 hours	48 hours
	supply voltage and load as specified.		hours				
6. Post Burn-in Electrical	Repeat step 4 above.		0		0	0	0
7. Frequency Aging	MIL-PRF-55310, paragraph 4.8.35		30 days				
8. PDA 3/			5%		10%	10%	20%
9. Radiographic Inspection	MIL-STD-202, Method 209, 1 View 1	0	0	0	0	0	
	in Y1 direction, second view 90°						
	relative to first view.						
10. Additional Electrical	Table 2B herein.		0				
Measurements							
11. Seal Test	MIL-STD-202, Method 112 and MIL-		0		0	0	
	PRF-55310, Paragraph 4.8.2						
12. External Visual 4/	Mil - Std. 883, Method 2009	0	0	0	0	0	0

Table 2 SCREENING REQUIREMENTS FOR CRYSTAL OSCILLATORS,DISCRETE COMPONENT CONSTRUCTION (Page 2 of 2)

- 1/ It is the responsibility of the user to specify detailed test conditions and define pass/fail criteria for each test. These values shall be based on the nearest equivalent military/ ECSS specifications, the manufacturer's specification, or the application, whichever is more severe.<u>MIL-PRF-55310</u> is the reference specification.
- 2/ In lieu of internal visual, DPA shall be performed on five samples to the requirements of <u>S-311-M-70.</u>No failures are permitted.
- 3/ Percent Defective Allowable (PDA) calculations shall include both burn-in and frequency aging failures for grade 1 parts.
- 4/ Pure tin plating is prohibited as a final finish on EEE parts.

Table 2A SCREENING REQUIREMENTS FOR CRYSTAL OSCILLATORS,HYBRID MICROCIRCUIT CONSTRUCTION (Page 1 of 2)

	Level 1			Level 2		Level 3	
Inspection/Test	Test Methods and Conditions 1/	Class B	SCD	Class B	SCD	Commercial	Commercial or
							Existing SCD
1. Non Destructive Bond Pull	MIL-PRF-55310, paragraph 4.4.1		0				
2. Internal Visual	MIL-PRF-55310, paragraph 4.4.2		0		0	O 2/	
3. Stabilization Bake (Prior to	MIL-STD-883, method 1008,		0		0	0	
Seal)	condition C, 150°C, min. hours		48		24	24	
4. Thermal Shock	MIL-STD-883, method 1011,		0				
	condition A						
5. Temperature Cycling	MIL-STD-883, method 1010,		0		0	0	
	condition B						
6. Constant Acceleration	MIL-STD-883, method 2001,		0		0	0	
	condition A, Y1 only, 5,000 Gs						
7. PIND	MIL-STD-883, method 2020,	0	0	0	0	0	
	condition B						
8. Pre Burn-In Electrical Tests			0		0	0	0
Input Current – Power	MIL-PRF-55310, paragraph 4.8.5						
Output Waveform	Verify the type of output waveform.						
Output Voltage – Power	MIL-PRF-55310, paragraph 4.8.21						
9. Burn-in (Load)	125 °C, nominal supply, voltage and		240		168	168 hours	48 hours
	<u>burn-in loads</u>		hours		hours		
10. Post Burn-in Electrical	Repeat step 8 above		0		0	0	0
11. Frequency Aging	MIL-PRF-55310, paragraph 4.8.35		30 days				
12. PDA 3/			5%		10%	10%	20%
13. Additional Electrical	Table 2B herein		0				
Measurements							

Table 2A SCREENING REQUIREMENTS FOR CRYSTAL OSCILLATORS, HYBRID

MICROCIRCUIT CONSTRUCTION	(Page 2 of 2)
---------------------------	---------------

		Level 1		Level 1		Level 2			Level 3
Inspection/Test	Test Methods and Conditions 1/	Class B	SCD	Class B	SCD	Commercial	Commercial or		
							Existing SCD		
14. Radiographic Inspection	MIL-STD-883, Method 2012	0	0	0	0	0			
15.Seal Test	MIL-STD-883, Method 1014		0		0	0	0		
a.Fine Leak	Condition A or B								
b.Gross Leak	Condition C								
16. External Visual 4/	MIL-STD-883, Method 2009		0		0	0	0		

Notes:

.

- 1/ It is the responsibility of the user to specify detailed test conditions and define pass/fail criteria for each test. These values shall be based on the nearest equivalent military/ ECSS specifications, the manufacturer's specification, or the application, whichever is most severe.<u>MIL-PRF-55310</u> is the reference specification.
- 2/ DPA in accordance with GSFC<u>S-311-M-70</u>may be performed in lieu of internal visual.
- 3/ Percent Defective Allowable (PDA) calculations shall include both burn-in and frequency aging failures for level 1 parts.
- 4/ Pure tin plating is prohibited as a final finish on EEE parts.

Table 2B ADDITIONAL ELECTRICAL MEASUREMENTS Test Test Methods, Conditions, and Requirements 1/ Oscillator Type 1. Oscillator Supply Voltage All Measure voltage magnitude, tolerance, polarity, regulation, peak to peak ripple, ripple frequency, and Modulation—Control 2, 5, 6

4,6

All

Adjustable

All

All

Square Wave

Square Wave

2, 5, 6

2.5.6

		noise across oscillator input terminals with specified load.
2.	Modulation—ControlInput Voltage	Same as 1 above, but also measure modulation magnitude and DC level limits or DC control magnitude.
3.	OvenSupplyVoltage	Same as 1 above, but measure oven voltage etc. across input terminals of oven.
4. O\	vervoltage Survivability	Apply overvoltage 20% above maximum specified supply voltage for 1 minute, with no performance degradation. Do not exceed 16.5 volts for oscillators employing CMOS parts.
5.	FrequencyAdjustment	Stabilize at reference temperature and determine by frequency measurements that output signal can be set to either nominal frequency or marked frequency offset with specified resolution and adjusted

Stabilize at lowest specified temperature and measure frequency. Increase temperature in specified steps

Set oscillator supply voltage (oven supply voltage, if applicable) to nominal, minimum, and maximum

values and measure output frequency. Determine frequency-voltage tolerance in accordance with

Measure between specified voltage levels. For TTL and CMOS compatible oscillators, the lower

measurement level for TTL and CMOS compatible oscillators shall be 1.4 volts and 50% VDD,

level shall be 2.0 volts and 90% of signal level respectively.

measurement level shall be 0.8 volts and 10% of signal level, respectively. The upper measurement

Measure at 50% voltage level, referenced to ground, and express as percent of wave form period. The

Apply modulation-control input voltage to input terminals through series resistance. Measure voltage

across series resistor and input terminals and calculate input impedance in accordance with paragraph

(allowing stabilization) and record frequency until highest specified temperature is reached. Calculate frequency-temperature accuracy in accordance with paragraph 4.8.10.

11. FrequencyDeviation Assemble test equipment in accordance with Figure 13 of MIL-PRF-55310, and measure (calculate) total deviation, deviation slope polarity, and deviation linearity in accordance with paragraph 4.8.31.

oven specified range.

paragraph 4.8.14.

respectively.

4.8.30.

Notes:

6.

8.

InitialFrequency-

RiseandFallTimes

10. Modulation—Control Input

Impedance

7. Frequency-Voltage

Tolerance

9. DutyCycle

Temperature Accuracy

It is the responsibility of the user to specify detailed test conditions and define pass/fail criteria for each test. These values shall be 1/

10. CRYSTAL OSCILLATORS

based on the nearest equivalent military specifications, the manufacturer's specification, or the application, whichever is most severe. MIL-PRF-55310 is the reference specification.

	Test Methods	Level 1	Level 2		Level 3
Inspection/Test	and Conditions	SCD	SCD	Commercial 2/	SCD or
					Commercial
Group 1		8 (0)	8 (0)	8 (0)	Not
					required
Frequency Aging	MIL-PRF-55310, paragraph 4.8.35				
Input Power Aging (Type 4 and	MIL-PRF-55310, paragraph 4.8.36				
Type 6)					
Group 2 2/		8 (0)	8 (0)	8 (0)	
Vibration, Sine	MIL-STD-202, Method 204 and MIL- PRF-55310, paragraph 4.8.39.1				
Mechanical Shock	MIL-STD-202, Method 213 and MIL-				
	PRF-55310, paragraph 4.8.41				
Acceleration (When Specified)	MIL-STD-202, Method 212 and MIL-PRF-				
	55310, paragraph 4.8.42.1		-		
Group 3 2/		4 (0)	4 (0)	4 (0)	
Thermal Shock	MIL-STD-202, Method 107 and MIL-				
	PRF-55310, paragraph 4.8.45				
Radiation Hardness	MIL-PRF-55310, paragraph 4.8.48				
(Operating) (When Specified)					
Group 4 2/		2 (0)	2 (0)	2 (0)	
Resistance to Soldering Heat	MIL-STD-202, Method 210 and MIL- PRF-55310, paragraph 4.8.49				
Moisture Resistance	MIL-STD-202, Method 106 and MIL- PRF-55310, paragraph 4.8.50				
Terminal Strength	MIL-STD-202, Method 211 and MIL- PRF-55310, Paragraph 4.8.52				

Table 3 QUALIFICATION TEST REQUIREMENTS FOR CRYSTAL OSCILLATORS (Page 1 of 2) 1/

Solderability	MIL-STD-202, Method 208, Each Lead				
Resistance to Solvents	MIL-STD-202, Method 215				
Group 5		3 (0)	3(0)	3(0)	Not required
		or 5 (1)	or 5 (1)	or 5 (1)	
Internal Water Vapor Content	MIL-STD-883, Method 1018				
3/	5,000 ppm at 100°C				

- 1/ Sample units shall have previously passed all the requirements of the screening tests of Table 2, 2A, or 2B for the product level and type of construction for which qualification is requested.
- 2/ Samples for this group come from the group 1 samples.
- 3/ Applies only to hybrid microcircuit construction. Generic data is not acceptable.

11: RELAYS (ELECTROMAGNETIC)

Table 1 RELAY REQUIREMENTS 1/

Procurement Specification	Relay Type	NASA/MIL Reference Specification	Level 1	Level 2	Level 3
ESCC Specification	Relays, Electromagnetic, Latching and Non-latching	ESCC 3601 & 3602	0	0	0
NASA/GSFC	Relays, Electromagnetic, Latching and Non-latching, Low Level	S-311-P-754 2/	0	0	0
	to 25 Amperes				0
MIL Specification	Relays, Electromagnetic, Latching and Non-latching, 25	MIL-PRF-6106	3/	3/, 4/	0
	Amperes and Up (Includes Some Lower Contact Ratings)				
	Relays, Electromagnetic, Established Reliability, Latching and	MIL-PRF-39016	M, P, R	M, P, R	L, M, P, R
	Non-latching, Low Level to 5 Amperes		3/	3/, 4/	
	Relays, Electromagnetic, Established Reliability, Latching and	MIL-PRF-83536	M, P, R	M, P, R	L, M, P, R
	Non-latching, Low Level to 25 Amperes		3/	3/, 4/	
SCD			5/, 6/	5/, 6/	5/, 6/
Commercial			7/	5/, 6/	5/, 6/

- 1/ The character "O" designates "use as is."
- 2/ This specification covers all types of relays intended for level 1 applications.
- 3/ Acceptable for use in levels 1 and 2 provided they are procured to failure rate "M" or better (when applicable), the procurement lot is verified to have been subjected to small particle cleaning and internal inspection during assembly, and to PIND testing afterwards.
- 4/ For level 2, in lieu of the internal cleaning and inspection, three random samples from the procurement lot may be subjected to and pass DPA in accordance with the requirements in GSFC S-311-M-70 with the following exception: resisudal gas analysis (RGA) is not applicable.

- 5/ Screening in accordance with Table 2 herein and qualification in accordance with Table 3 herein are required.
- 6/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (military or SCD) need not be repeated. However, lot specific attributes data for screening tests, and lot specific or generic attributes data as applicable to various test groups of qualification tests must be submitted to show that tests were performed with acceptable results.
- 7/ Relays fabricated to manufacturer's "high reliability" or "space grade" flow and meeting all of the Table 2 and Table 3 requirements may be considered acceptable for use without an SCD.

		Level		
Inspection/Test	Test Methods, Conditions, and Requirements 3/	1	2	3
1. Cleaning and Small Particle Inspection 4/,5/	Manufacturer's approved procedure.	ο	ο	
2. Visual Inspection (External) 6/	Materials, design, construction, header glass, marking, and workmanship.	0	0	0
3. Mechanical Inspections 7/	Critical physical dimensions.	0	0	
4. Initial Electrical Inspections 8/	Table 2A.	0		
5. Vibrational Scan (Sinusoidal) 9/, 10/ 11/, 12/	 <u>MIL-STD-202</u>, Method 204. Specified test condition (amplitude, frequency range, sweep time and duration). Specified electrical load conditions. Specified contact load. Contact monitoring to specification. Contact transfer to specification. 	0		
6. PIND 13/	Manufacturer's approved procedure.	0	0	0
7. Internal Moisture Detection	 Relay dwell with coils deenergized for 30 minutes at 20±5 °C. IR≥10,000 megohms (between all contact pins together and case). Energize relay coil at 140% rated voltage for 2.5 minutes. Repeat for two-coil latching relays. IR≥10,000 megohms (between all contact pins together and case). 	0	0	
8. High Temperature Soak	16 hours at maximum rated operating temperature.Energize coil at 120% rated voltage. For two coil latching relays, alternately energize coils 4 hours at a time.	0		

Table 2 RELAY SCREENING REQUIREMENTS 1/, 2/ (Page 1 of 4)
Level Inspection/Test 2 3 Test Methods, Conditions, and Requirements 1 Low Temperature Run-in 9. Run-In Tests 14/ 1 hour dwell at minimum rated operating temperature Pickup or latch/reset voltage to specification Contact loading: Open circuit load voltage at 10 to 50mV Load current at 10 to 50µA Cycling rate: 60 actuations/minute (minimum) Specified number of cycles Level 1 - 2,500 0 Level 2 - 1,000 cycles 0 Miss level: 100 ohms maximum High Temperature Run-in Rated coil voltage for 1 hour at maximum rated operating temperature For two-coil latching relays, 30 minutes each coil Pickup or latch/reset voltage to specification Contact loading: Open circuit load voltage at 10 to 50mV Load current at 10 to 50µA Cycling rate: 60 actuations/minute (minimum) Specified number of cycles Level 1 – 2,500 cycles 0 Level 2 – 1,000 cycles 0 Miss level: 100 ohms maximum Room Temperature Run-in 1 hour dwell at 25±5 °C Pickup or latch/reset voltage to specification Contact loading: Open circuit load voltage at 10 to 50mV Load current at 10 to 50µA Cycling rate: 60 actuations/minute (minimum) Specified number of cycles Level 1 – 2,500 cycles 0 Miss level: 100 ohms maximum

Table 2 RELAY SCREENING REQUIREMENTS 1/, 2/ (Page 2 of 4)

		Level			
Inspection/Test	Test Methods, Conditions, and Requirements	1	2	3	
10. Radiographic Inspection	MSFC-STD-355C	ο			
11. Hermetic Seal	Fine Leak: MIL-STD-202,Method112 Test Condition C 1.0 x 10-8 cc/sec. or 0r MIL-STD-883, Method 1014 Test Condition A1, A2, or B 1.0 x 10-8 cc/sec. 0.0 x 10-8 cc/sec.	Ο	0		
	Gross Leak: MIL-STD-883, Method 1014 Condition D	0	0		
12. Final Electrical Inspections 8/, 15/	Table 2A	0	0	0	
13. Percent Defective Allowable (PDA) 15/	Level 1 – 5% Level 2 – 15%	0	0		

Table 2 RELAY SCREENING REQUIREMENTS 1/, 2/ (Page 3 of 4)

Notes:

- 1/ This screening table is suitable for both low level and high level relays, latching and non-latching. Unless otherwise specified, relays with DC resistive contact ratings up to and including 2 amperes shall be considered low level relays. Relays with DC resistive contact ratings higher than 2 amperes shall be considered high level relays.
- 2/ For level 1 applications, screening in accordance with ESCC 3601/3602 or GSFC S-311-P-754 is acceptable in lieu of the screening specified in this table. For levels 2 and 3, screening in accordance with MIL-PRF-39016, MIL-PRF-6106, MIL-PRF-83536, GSFC S-311-P-754, or ESCC 3601/3602 as applicable, is acceptable in lieu of the screening specified in this table, except PIND testing is also required for level 2 applications.

Table 2 RELAY SCREENING REQUIREMENTS 1/, 2/ (Page 4 of 4)

- 3/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent military/ESCC specifications, manufacturer's specification, or the application, whichever is most severe. Unless otherwise specified, 100% of the relays shall be submitted to the tests and inspections in this table in the order shown.
- 4/ For level 2, if cleaning and small particle inspection are not performed, a DPA is required. Recommended DPA procedure is S-311-M-70 with the following exception: residual gas analysis (RGA) is not applicable.
- 5/ Appendix A to MIL-PRF-39016 may be used as a guideline.
- 6/ The use of pure tin finish is prohibited as a final finish or undercoat. Header glass inspection shall be performed with microscopic power of at least 10x and shall include examinations for the following types of irregularities: blisters, foreign material, dark spots, cracks, and chips. Meniscuses shall not extend up the terminal more than 0.20 inch or one-third the terminal diameter, whichever is greater.
- 7/ A minimum of three relays shall be measured. In the event of a failure, the entire lot shall be screened for dimensions and rejects discarded.
- 8/ Relays possessing high level and low level capabilities that are intended for low level use should not be subjected to contact loads (current and voltage) that exceed the manufacturer's recommended limit for preserving the low level functionality. For example, the popular TO-5 relays should not be tested with a contact load exceeding 10 milliamperes or 6 volts open circuit (DC or peak AC) if subsequent use in a low level application is planned.
- 9/ All relays shall be vibrated in the direction of contact motion. In addition, if qualification testing is required after screening, a sample quantity shall be vibrated in each of three mutually perpendicular planes, one of which must be the direction of contact motion.
- 10/ Contacts shall be monitored with an adequate test circuit to verify that no opening of closed contacts in excess of 10 microseconds, nor closing of open contacts in excess of 1 microsecond, occurs. The contact load shall be 10 mA maximum at 6 Vdc maximum.
- 11/ Prior to removal from the test fixture, apply maximum over the temperature range pickup or latching voltage to the coil and verify that relay contacts have switched. Remove pickup voltage or apply reset voltage and verify that contacts have switched again. Failure of relay contacts to transfer in either direction shall be cause for rejection.
- 12/ External visual examination required after testing to verify no evidence of mechanical damage.
- 13/ Appendix B to MIL-PRF-39016 may be used as a guideline.
- 14/ The specified sequence (low temperature, high temperature, room temperature) is preferred but not mandatory
- 15/ Only the final electrical inspection results shall be used to determine the defect rate for the PDA

Inspection/Test	Test Methods, Conditions, and Requirements 2/	1	2	3
DC Coil Resistance	MIL-STD-202, Method 303	о	о	о
	Low Level Relays			
Static Contact Resistance	MIL-STD-202, Method 307	0	0	0
	Test load: 10 mA maximum at 6 V maximum (DC or peak AC)			
	No actuations prior to measurement			
	Measurements between all contact pairs			
or	One measurement for each of three actuations (use average value)	or	or	or
	Static contact resistance to specification			
	High Level Relays			
Contact Voltage Drop	MIL-STD-202, Method 307	0	0	0
	Test load: Rated DC resistive contact current at 6 V maximum (DCor peak AC)			
3/	No actuations prior to measurement			
	Measurements between all contact pairs			
	One measurement for each of 10 actuations (use average value)			
	Contact voltage drop to specification			
	Non-latching Relays			
Pickup, Hold, and	Gradually step or ramp coil voltage until the relay contacts switch	0	0	0
Dropout Voltages	Pickup voltage to specification			
	Gradually reduce coil voltage to specified hold voltage			
	No switching of contacts			
or	Gradually reduce coil voltage until contacts switch to their original state	or	or	or
	Dropout voltage to specification			
	Latching Relays			
Latch/Reset Voltages	Gradually step or ramp latch coil voltage until the relay contacts switch	0	0	0
4/	Latch voltage to specification			
	Remove latching voltage			
	Gradually step or ramp reset coil voltage until the relay contactsswitch			
	Reset voltage to specification			

Table 2A RELAY ELECTRICAL INSPECTIONS 1/ (Page 1 of 4)

			Level			
Inspection/Test	Test Methods, Conditions, and Requirements 2/	1	2	3		
Operate and Release Time 3/, 5/	Use oscilloscope or other acceptable means to time each pair of contacts. Measurements shall be exclusive of bounce or stabilization times. Contact load: 10 mA maximum at 6 V maximum (DC or peak AC). Alternately apply and remove rated coil voltage a total of five times. Operate and release time to specification based on the average of five consecutive measurements.	O	O			
Contact Bounce Time 3/, 6/	Use oscilloscope or other acceptable means to time each pair of contacts. Contact load: 10 mA maximum at 6 V maximum (DC or peak AC). Alternately apply and remove rated coil voltage a total of five times. Contact bounce time to specification based on the average of five consecutive measurements.	0	0			
Contact Stabilization Time (When Specified) 3/, 7/	Use oscilloscope or other acceptable means to time each pair of contacts. Contact load: 10 mA maximum at 50 mV maximum (DC or peak AC). Alternately apply and remove rated coil voltage a total of fivetimes. Contact stabilization time to specification based on the average of five consecutive measurements.	O				
Dielectric Withstanding Voltage 8/, 9/, 10/	MIL-STD-202, Method 301 Specified test voltage. Leakage current to specification.	0				
Insulation Resistance 9/	MIL-STD-202, Method 302 Test Condition A (relays with coil and contact ratings both < 60 volts). Test Condition B (other relays). Resistance (minimum) to specification.	0				
Coil Transient Suppression 11/	Use oscilloscope or other acceptable means to observe magnitude of the induced voltage transient across the coil(s). Apply rated coil voltage. The maximum of three consecutive readings shall be recorded. Back EMF (induced voltage) to specification.	0	0			

Table 2A RELAY ELECTRICAL INSPECTIONS 1/ (Page 2 of 4)

		Level			
Inspection/Test	Test Methods, Conditions, and Requirements 2/	1	2	3	
Neutral Screen 12/, 13/	Rated coil voltage to both coils simultaneously for a period of 10 milliseconds minimum. Repeat three times. Neutral screen to specification.				
	In the event of failure, apply a 10±1 ms pulse at maximum allowable latch voltage (at 25°C). Latch to specification. Apply 10±1 ms pulse at maximum allowable reset voltage (at 25 °C). Reset to specification.	O	0		
Non-Make-Before-Break 3/	Rated pickup, latch or reset voltage. Contact load: 10 mA maximum at 6 V maximum (DC or AC peak). Energize and deenergize 10 consecutive cycles. Non-make-before-break to specification.	0			

Table 2A RELAY ELECTRICAL INSPECTIONS 1/ (Page 3 of 4)

Notes:

- 1/ This table is suitable for both low level and high level relays, latching and nonlatching. Unless otherwise specified, relays with DC resistive contact ratings up to and including 2 amperes shall be considered low level relays. Relays with DC resistive contact ratings higher than 2 amperes shall be considered high level relays.
- 2/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent military specifications, manufacturer's specification, or the application, whichever is most severe. Unless otherwise specified, 100% of the resistors shall be submitted to the tests and inspections in this table in the order shown.
- 3/ Relays possessing high level and low level capabilities that are intended for low level use should not be subjected to contact loads (current and voltage) that exceed the manufacturer's recommended limit for preserving the low level functionality. For example, the popular TO-5 relays should not be tested with a contact load exceeding 10 milliamperes or 6 volts open circuit (DC or peak AC) if subsequent use in a low level application is planned.

Table 2A RELAY ELECTRICAL INSPECTIONS 1/ (Page 4 of 4)

- 4/ For screening, the mounting position of the relay is optional. In addition, if qualification testing is required after screening, a minimum sample quantity equal to that specified in Group 2 of Table 3 (for the applicable quality level) shall be mounted and tested in each of three mutually perpendicular planes.
- 5/ Release time is not applicable to latching relays.
- 6/ A contact bounce shall be considered any occurrence equal to or greater than 90 percent of the open circuit voltage with a pulse width of 10 microseconds or greater. Lesser values are considered to be dynamic contact resistance.
- 7/ Contact stabilization time is the maximum time allowed for the contacts to reach and maintain a static contact resistance state following the actual operate or release time of the relay. Essentially, it is the sum of the contact bounce time plus the time required for the dynamic contact resistance to stabilize to static contact resistance.
- 8/ The DWV test duration shall be 5 seconds minimum.
- 9/ Points of application for testing: (1) between case, frame, or enclosure, and between all contacts in the energized and deenergized positions; (2) between case, frame, or enclosure and coil(s); (3) between all contacts and coil(s); (4) between open contacts in the energized and deenergized positions; (5) between coils of dual-coil relays; (6) and between contact poles in the energized and deenergized positions.
- 10/ External visual examination required after testing to verify no evidence of mechanical damage.
- 11/ Applicable only to DC operated relays with diodes for coil transient voltage suppression.
- 12/ Applicable only to latching relays.
- 13/ A relay that will not assume a neutral position for three successive test cycles is considered an acceptable part and does not require further testing.

Table 3 RELAY QUALIFICATION REQUIREMENTS 1/, 2/ (Page 1 of 4)

		Quantity	Quantity (Accept Number)			
Inspection/Test	Test Methods, Conditions, and Requirements 3/	Level 1	Level 2	Level 3		
Group 1						
Screening to Table 2	Samples shall be selected from parts that have passed the screening	100%	100%	100%		
	requirements in Table 2.					
Group 2		9(0)	6(0)	3(0)		
Thermal Shock	MIL-STD-202, Method 107					
4/, 5/, 6/, 7/	Level 1 – 25 cycles	0	0			
	Level 2 – 10 cycles		Ŭ	0		
	Level 3 - 5 cyles					
	High temperature – max. rated operating					
	Low temperature – min. rated operating					
	During the last cycle, at each temperature extreme :					
	IR to specification					
	Pickup/hold/dropout or latch/reset voltages to specification					
	Operate and release time to specification					
	After completion of thermal shock :					
	DWV to specification					
Shock, Specified Pulse	MIL-STD-202, Method 213	0	0			
7/, 8/	Specified number and direction of applied shocks Specified test condition (Gs, pulse					
	time, waveform).					
	Specified electrical load conditions					
	Specified contact load					
	Contact monitoring to specification					

Vibration, Random	MIL-STD-202, Method 214	0	
7/, 8/, 9/, 10/	Specified test condition (power spectral density, overall RMS G, duration)		
	Specified electrical load conditions Specified contact load		
	Contact monitoring to specification		
	Contact transfer to specification		

Table 3 RELAY QUALIFICATION REQUIREMENTS 1/, 2/ (Page 2 of 4)

			Quantity (Accept Number)		
Inspection/Test	,	Test Methods, Conditions, and Requirements 3/	Level 1	Level 2	Level 3
Group 2 (continued)					
PIND 11/	Manufacturer	s approved procedure			
Acceleration 7/, 12/, 13/	MIL-STD-202	Method 212	0	0	
	Specified G's	-			
	Acceleration t	o specification			
	MIL-STD-202	Method 211	0	0	
Terminal Strength 7/	Conditions A a	and C			
	Applied force	to specification			
Electrical Inspections 6/	Table 2A		0	0	0
Hermetic Seal					
	Fine Leak:	MIL-STD-202,Method112Test	0	0	0
		Condition C			
		1.0 x 10-8 cc/sec.			
		or			
		MIL-STD-883, Method 1014			
		Test Condition A1, A2, or B			
		1.0 x 10-8 cc/sec.			
	Gross Leak: N	/IL-STD-883, Method 1014	0	0	0
		Condition D			
Group 3			6(0)	3(0)	
Resistance to Soldering	MIL-STD-202	Method 210	0	0	
Heat (WhenApplicable)	Test Condition	n B			Not
4/, 5/, 7/	IR to specification	tion			Required
	Coil resistance	e to specification			
	Contact resist	ance to specification			

	Pickup/hold/dropout or latch/reset voltages to specification			
Electrical Inspections 6/	Table 2A	0	0	
Hermetic Seal	Same as Group 2	0	0	

Table 3 RELAY QUALIFICATION REQUIREMENTS 1/, 2/ (Page 3 of 4)

		Quantity (
Inspection/Test	Test Methods, Conditions, and Requirements 3/	Level 1	Level 2	Level 3
Group 4		4(0)	4(0)	
Life 14/, 15/	Maximum rated operating temperature			Not
	Specified rated contact load (current and voltage)			Required
	Specified cycling rate			
		0		
	Level 1 – 25,000 cycles	Ŭ	ο	
	Level 2 – 10,000 cycles			
	Contact monitoring to specification			
	Static contact resistance or contact voltage drop≤2X initial specified value			
	Case to ground fuse electrically continuous			
Terminal Strength 7/	Same as Group 2	0		
Electrical Inspection 6/	Table 2A	0		
Hermetic Seal	Same as Group 2	0		
Group 5		3(0)	3(0)	Not
Solderability	MIL-STD-202. Method 208	0	0	Required
(when applicable)				
Resistance to Solvents 7/	MIL-STD-202, Method 215	0	0	
Group 6				
Thermal Outgassing 16/	ASTM E595	0	0	0
	TML =1.0%maximum			
	CVCM =0.10%maximum			

Table 3 RELAY QUALIFICATION REQUIREMENTS 1/, 2/ (Page 4 of 4)

1/ This qualification table is suitable for both low level and high level relays, latching and nonlatching. Unless otherwise specified, relays with DC resistive contact ratings up to and including 2 amperes shall be considered low level relays. Relays with DC resistive contact ratings higher than 2 amperes shall be considered high level relays. The qualification samples shall be subdivided as specified in the table for Groups 2 through 4 and Group 6, inclusive.

Group 5 inspections can be performed on unscreened samples or on samples that have completed one of the other qualification test groups.

- 2/ Qualification in accordance with <u>ESCC 3601/3602</u>, <u>MIL-PRF-39016</u>, <u>MIL-PRF-6106</u>, <u>MIL-PRF-83536</u>, or <u>GSFC S-311-P-754</u>, as applicable, is acceptable in lieu of the qualification specified in this table.
- 3/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent military specifications, manufacturer's specification, or the application, whichever is most severe.
- 4/ Electrical inspections are as specified in Table 2A except as modified by the notes herein. Reference Note 3 in this table for test precautions for low level relays.
- 5/ Pickup/hold/dropout or latch/reset voltages shall be measured only in one plane.
- 6/ The DWV test duration shall be 60 seconds minimum.
- 7/ External visual examination required after testing to verify no evidence of mechanical damage.
- 8/ Contacts shall be monitored with an adequate test circuit to verify that no opening of closed contacts in excess of 10 microseconds, nor closing of open contacts in excess of 1 microsecond, occurs. The contact load shall be 10 mA maximum at 6 Vdc maximum.
- 9/ Relays shall be vibrated in each of three mutually perpendicular planes.
- 10/ Prior to removal from the test fixture, apply maximum over the temperature range pickup or latching voltage to the coil and verify that relay contacts have switched. Remove pickup voltage or apply reset voltage and verify that contacts have switched again. Failure of relay contacts to transfer in either direction shall be cause for rejection.
- 11/ It is the responsibility of the user to approve manufacturer procedures for particle impact noise detection (PIND). Appendix B to MIL-PRF-39016 may be used as a guideline.

- 12/ Acceleration shall be applied in each of three mutually perpendicular planes, one of which shall be the direction most likely to fail. In each direction, the coil shall be deenergized for 5 minutes, rated coil voltage shall be momentarily applied, and the voltage shall be reduced to the maximum ambient pickup voltage for 5 minutes. Latching relays shall remain in each latched position with no voltage applied to the coils. Contacts shall be monitored during testing for proper position.
- 13/ Acceleration failure criteria: The contacts of the relay shall remain in the deenergized position with no voltage applied to the coil and in the energized position when rated coil voltage is applied to the coil. Latching relays shall remain in each latched position with no voltage on the coil.
- 14/ Each relay case shall be connected to system ground through a single normal-blow fuse rated at the greater of 100 mA or 5% of the rated DC resistive contact load current.
- 15/ The contact miss detector's monitoring level shall be less than 100 ohms for low level testing and less than 10 percent of the open circuit voltage for high level testing.
- 16/ Materials listed in NASA Reference Publication 1124 that meet TML and CVCM limits are acceptable for use without further testing.

12: RESISTORS

Table 1A FIXED RESISTOR REQUIREMENTS (Page 1 of 2)

Procurement		ESCC/ MIL/ NASA	Failure Rate Level Required 1/		
Specification	Resistor Style and Type	Reference	Level 1	Level 2	Level 3
Specification		Specification			
Composition					
SCD Commercial			2/	2/ 2/	2/ 2/
Film/Foil					
ESCC Specification	RNC/MB Fixed, Film / High Precision, Fixed , Metal Foil	ESCC 4001	0	0	0
	RHV Fixed, Film, High Voltage / Fixed, Thick and Thin Film Chip		0	0	0
	Network, Thick Film	ESCC4005	0	0	0
MIL Specification	RLRFixed, General Purpose, Established ReliabilityRNXFixed, High Stability, Established ReliabilityRMFixed, Chip, Established ReliabilityRZFixed, NetworkMOXFixed, High VoltageHGFixed, High Voltage, PrecisionTGFixed, High Voltage, Precision, Low TCTKFixed, Derecision, Low TC, Radial-LeadTKFixed, Low TC, Precision, High StabilityVPRFixed, Foil, Precision, Power, Current SensingTKFixed, Watched-Pair", Low TC, PrecisionP813Fixed, Low TC, Precision, Radial Lead	MIL-PRF-39017 MIL-PRF-55182 MIL-PRF-55342 MIL-PRF-83401 S-311-P-683 S-311-P-672 S-311-P-741 S-311-P-741 S-311-P-742 S-311-P-794 S-311-P-795 S-311-P-796 S-311-P-813	T, S T, S 3/ 4/ 4/ 5/ 4/ 5/ 5/ 5/ 4/ 2/	R, P R, P 3/ 4/ 5/ 5/ 5/ 5/ 4/ 2/	M M 3/ 4/ 5/ 5/ 5/ 5/ 5/ 5/
SCD Commercial				2/	2/ 2/

Table 1A FIXED RESISTOR REQUIREMENTS (Page 2 of 2)

Procurement	Resistor Style and Type		ESCC/ MIL	Failure Rate Level Required 1/			
Specification			Reference Specification	Level 1	Level 2	Level 3	
Wirewound							
	RWR	Power,Fixed,Wirewound	ESCC 4002	0	0	0	
ESCC Specification	RER	Power,Fixed,Wirewound,ChassisMounted	ESCC 4003	0	0	0	
MIL Specification	RBR	Fixed,Accurate,EstablishedReliability	MIL-PRF-39005	R	R, P	М	
	RWR	Fixed, Power, Established Reliability	MIL-PRF-39007	T, S	R, P	М	
	RER	Fixed, Power, Established Reliability	MIL-PRF-39009	R	R, P	М	
SCD				2/	2/	2/	
Commercial					2/	2/	

Notes:

1 / Resistors may be used as is at the specified failure rate level. "O" designate use as is.

2/ Resistors shall satisfy the screening and qualification requirements of Tables 2A and 3A.

3/ Lot sample Destructive Physical Analysis (DPA) is required prior to use in space flight applications. Particular attention should be paid to the integrity of the termination attachment to the resistive element (i.e., cracked solder joints, misaligned connections, etc.).

4/ Resistors may be used as is.

5/ Resistors may be used as is if listed in the GSFC Qualified Parts List Directory (QPLD).

Procurement		MIL/NASA Failure Rate Level Requi		e Level Required 1/	1
Specification	Resistor Style and Type	Reference Specification	Level 1	Level 2	Level 3
Film/Foil					
NASA Specification MIL Specification SCD Commercial	1285G Potentiometer, Precision Trimming RJR Variable,LeadScrew,EstablishedReliability	S-311-P-798 <u>MIL-PRF-39035</u>	2/ R 3/	2/ R, P 3/ 3/	2/ M 3/ 3/
Wirewound MIL Specification SCD Commercial	RTR Variable,LeadScrewEstablishedReliability	MIL-PRF-39015_	R 3/	R, P 3/ 3/	M 3/ 3/

Table 1B VARIABLE RESISTOR REQUIREMENTS 1/

Notes:

- 1/ Resistors may be used as is at the specified failure rate level.
- 2/ Resistors may be used as is if listed in the GSFC Qualified Parts List Directory (QPLD).
- 3/ Resistors shall satisfy the screening and qualification requirements of Tables 2B and 3B.

	Tost Matheda Conditions and	Part Type/Level								
Inspection/Test	Test Methods, Conditions, and	Con	nposition		F	ilm/Foil		Wire	wound	
	Requirements 1/	1	2	3	1	2	3	1	2	3
1. Precap Visual Inspection 2/, 3/	Networks: Particles, metallization (scratches, voids, adherence, bridging, alignment, corrosion, probe marks), laser trim faults, bonding pad defects, oxide				0	0	0			
	defects Chip: Materials, design, construction and workmanship - sample size (accept number)				13 (0)	13 (0)	13 (0)			
2. Visual Inspections 4/	Materials, design, construction, marking, and workmanship	0	0	0	ο	0	0	0	0	0
3. Mechanical Inspections 5/	Critical physical dimensions	ο	0		0	0		0	0	
4. Initial DC Resistance 6/, 7/, 8/	MIL-STD-202, Method 303	ο	0	0	0	0	0	0	0	0
5. Thermal Shock 9/, 10/	MIL-STD-202, Method 107 Level 1 - 25 cycles Level 2 - 10 cycles High temperature - max. rated operating Low temperature - min. rated operating				0	0				
6. Conditioning or Overload 9/, 10/, 11/ or	MIL-STD-202, Method 108 Specified rated wattage or voltage multiple Specified temperature Specified time If time≤24 24 hours: continuous operation If time > 24 hours: 1.5 hours on, 0.5 hours off or 100 hours @ max. rated operating temperature				0	0	/16	0	0	/16
Hign Temperature										

Table 2A FIXED RESISTOR SCREENING REQUIREMENTS (Page 1 of 3)

	Test Methods, Conditions, and				Part	Type/Lev	vel			
Inspection/Test	Test Methods, Conditions, and	Cor	nposition		Film/Foil			Wir	ewound	-
	Requirements 1/	1	2	3	1	2	3	1	2	3
	MIL-STD-202, Method 303				0	0				
7. Final DC Resistance	Resistance and R tospecification									
8. Hermetic Seal 13/	Fine leak: MIL-STD-202,Method112									
	Test Condition C									
	5.0 X 10-7 cc/sec. (networks)				0	0				
	1.0 X 10-8 cc/sec. (others)									
	Gross Leak: MIL-STD-883, Method 1014									
	Condition D									
9. Radiographic	MSFC-STD-355C				0			0		
Inspection 14/										
10. Percent Defective	Level 1 - 5%	0			0			0		
Allowable (PDA) 15/	Level 2 - 15%		0			0			0	

Table 2A FIXED RESISTOR SCREENING REQUIREMENTS (Page 2 of 3)

Notes:

- 1/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent ESCC/ military specifications, manufacturer's specification, or the application, whichever is most severe. Unless otherwise specified, 100% of the resistors shall be submitted to the tests and inspections in this table in the order shown.
- 2/ Examination shall be performed using binocular magnification of 50X to 100X.
- 3/ If solder is used for internal connections, it shall have a liquid point not less than +280°C.
- 4/ May be performed anytime during screening. Small resistors, such as chip resistors, shall be examined using 30X to 60X magnification, but in case of conflict, 30X shall be the referee power.
- 5/ May be performed anytime during screening. A minimum of 3 resistors shall be measured. In the event of a failure, the entire lot shall be screened for dimensions and rejects discarded.

Table 2A FIXED RESISTOR SCREENING REQUIREMENTS (Page 3 of 3)

- 6/ The test voltage must be specified in the SCD or by the manufacturer (commercial parts).
- 7/ For networks, unless otherwise specified, individual resistive elements shall be isolated (whenever possible) to minimize computation of pin-to-pin resistance values.
- 8/ Unless otherwise specified by the manufacturer or SCD, out of tolerance composition resistors shall be baked at +100° C (with no power applied) according to the following schedule: 1/8 watt (style RCR05), 25 ± 4 hours; 2 watt (style RCR42), 130 ± 4 hours; all other in between wattages/styles, 96± 4 hours. Resistors that remain out of tolerance after baking shall be considered failures.
- 9 / ΔR is optional after this inspection if ΔR is specified for thermal shock and conditioning combined.
- 10/ External visual examination required after testing to verify no evidence of mechanical damage.
- 11/ Unless otherwise specified, the manufacturer's maximum rated continuous dc working voltage should not be exceeded during conditioning as determined by $V = \sqrt{P \cdot R}$.
- 12/ For chip resistors only: if size or termination precludes conditioning, the high temperature exposure test shall be performed instead.
- 13/ Applicable only to hermetically sealed networks and resistors.
- 14/ Not applicable to composition, chip or network resistors.
- 15/ Applies to a combination of the following: initial dc resistance, thermal shock, conditioning, overload or high temperature exposure, final dc resistance, delta-R, and hermetic seal (if applicable).
- 16/ Power conditioning is recommended for Level 3 applications requiring resistance stability over time.

		Part Type/Level					
Inspection/Test	Test Methods, Conditions, And Requirements 1/	Non-W	/irewound		Wir	ewound	
		1	2	3	1	2	3
Visual Inspections	Materials, design, construction, marking, and workmanship	0	0	0	0	0	0
Mechanical Inspections	Critical physical dimensions	0	0		0	0	
2/							
Thermal Shock 3/, 4/, 5/	MIL-STD-202, Method 107						
6/	Level 1 - 25 cycles						
	Level 2 - 10 cycles	0	0		0	0	
	High temperature - max. rated operating						
	Low temperature - min. rated operating						
	Total resistance and ΔR to specification						
	Setting stability (Δ %) to specification						
	Continuity check						
Conditioning 3/, 4/, 7/	MIL-STD-202, Method 108						
	Specified rated wattage multiple						
	Specified temperature	0	0		0	0	
	100 hours minimum (Level 1), 1.5 hours on, 0.5 hours off						
	50 hours minimum (Levels 2 and 3), 1.5 hours on, 0.5 hours off						
	Total resistance and ΔR to specification						
Total Resistance 4/	MIL-STD-202, Method 303			0			0
Contact Resistance	Contact resistance variation to specification, or Peak	0	0		0	0	
Variation or Peak Noise	noise (resistance variation) to specification						
8/							

Table 2B VARIABLE RESISTOR SCREENING REQUIREMENTS (Page 1 of 4)

		Part Type/Level					
Inspection/Test	Test Methods, Conditions, and Requirements 1/	Non-W	irewound		Wir	ewound	
		1	2	3	1	2	3
Immersion	Gross leak: <u>MIL-STD-202,</u> Method112,TestConditionD						
	Modify as follows:						
	1.Precondition resistors at +125°C for 15±2 minutes.						
	2.Stabilize at room temperature for 15±2 minutes.	0	0		0	0	
	3.Immerse into fluorocarbon bath held at +85°C to +90°C, shake for 5						
	seconds maximum, then keep resistors submerged for a period of 1						
	minute ±5 seconds.						
	4.Discard resistors with inadequate seals as evidenced by a						
Actual Effective	Number of turns or angular degrees to specification	0			0		
Electrical Travel 9/					-		
Absolute Minimum	Resistance to specification				0	0	
Resistance 10/							
End Resistance 11/	Resistance to specification	0	0		0	0	
	MIL-STD-202, Method 301	0			0		
5111 5/	Specified test voltage				Ŭ		
	Between terminals tied together and all external metal portions						
IP	MIL-STD-202, Method 302, Test Condition A or B	0			0		
	Between terminals tied together and all external metal portions				Ŭ		
	Resistance (minimum) to specification						
Torque 12/ 13/14/	Operating torque to specification	0	0		0	0	
	Clutch to specification (when applicable)		Ŭ		Ŭ	Ŭ	
	Stop strength to specification (when applicable)						
Radiographic Inspection	MIL-STD-202, Method 209	0			0		
15/							

Table 2B VARIABLE RESISTOR SCREENING REQUIREMENTS (Page 2 of 4)

		Part Type/Level								
Inspection/Test	Test Methods, Conditions, and Requirements 1/	Non-W	irewound	I	Wirewound					
- -		1	2	3	1	2	3			
Percent Defective	Level 1 - 5%	0			0					
Allowable (PDA) 16/	Level 2 - 15%		0			0				

Table 2B VARIABLE RESISTOR SCREENING REQUIREMENTS (Page 3 of 4)

Notes:

- 1/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent ESCC/ military specifications, manufacturer's specification, or the application, whichever is most severe.
- 2/ A minimum of 3 resistors shall be measured. In the event of a failure, the entire lot shall be screened for dimensions and rejects discarded.
- 3/ External visual examination required after testing to verify no evidence of mechanical damage.
- 4/ Total resistance shall be measured between the end terminals with the movable contact arm positioned against a stop. The positioning of the contact arm and terminal shall be the same for all subsequent measurements of total resistance on the same specimen. The test voltage for total resistance measurements must be specified in the SCD or by the manufacturer (commercial parts).
- 5/ Setting stability in percent shall be determined by placing the movable contact arm at approximately 40% of the actual effective electrical travel. A dc test potential shall be applied between the end terminals. The measured voltage between the contact arm and one end terminal (E1) and the measured voltage between the end terminals (E2) shall be used to determine the setting stability in percent using the following formula:Setting stability (%) = (E1 X 100)/E2.
- 6/ There shall be no abrupt discontinuities, especially when the direction of travel is reversed, as the contact arm is rotated at a uniform rate back and forth two times across the actual effective electrical travel. During rotation, a suitable electrical device shall be connected between the contact arm and either end terminal to monitor the change in resistance or voltage.
- 7/ The conditioning voltage shall be applied between the end terminals. Unless otherwise specified, the manufacturer's rated continuous dc

working voltage should not be exceeded during conditioning as determined by V = \sqrt{PR} .

Table 2B VARIABLE RESISTOR SCREENING REQUIREMENTS (Page 4 of 4)

- 8/ Contact resistance variation or peak noise is a measure of any spurious variations in the electrical output as the contact arm is rotated. It is expressed either as a maximum resistance variation limit, or as a percentage of the total resistance output for the specified rotational travel increment. The output can be observed on an oscilloscope or strip chart recorder, and either method requires calibration to obtain a measure of the peak resistance spikes observed during contact arm rotation. The contact arm shall be rotated in both directions through 90 percent of the actual effective electrical travel for a total of 6 cycles. Only the last 3 cycles shall count in determining whether or not a spurious resistance variation is observed at least twice in the same location, exclusive of the roll-on or roll-off points where the contact arm moves between the termination and resistance element.
- 9/ The actual effective electrical travel shall be measured by placing the resistor in a suitable device and circuit, which will indicate both angular position of the operating shaft and electrical output. The actual effective electrical travel will be the number of turns, or degrees of rotation, in which a change in contact arm position gives a measurable change in electrical output.
- 10/ The contact arm shall be positioned at the extreme counterclockwise limit of mechanical travel, and the resistance shall be measured between the contact arm and corresponding end terminal. Caution: do not exceed rated current during this measurement.
- 11/ The contact arm shall be so positioned at one end of the resistance element so that a minimum value of resistance can be determined. The same procedure shall be followed for the other end of the resistance element. Caution: do not exceed rated current during this measurement.
- 12/ The torque required to move the contact arm on the resistance element shall be determined at approximately 10, 50, and 90 percent of actual effective electrical travel by the torque wrench method or any suitable equivalent.
- 13/ If the resistor contains a clutch mechanism, the contact arm shall be adjusted to each extreme limit of mechanical travel, and sufficient torque shall be applied to the actuator to permit the contact arm to idle for 25 complete mechanical turns. During idle, a suitable electrical indicating device connected between the contact arm terminal and an adjacent end terminal shall be observed for electrical continuity. After idle, the contact arm shall be rotated in the opposite direction, and the indicating device shall be observed to determine whether the contact

arm actually reversed direction.

- 14/ When stop strength is specified, the contact arm shall be rotated to each extreme of mechanical rotation with the specified torque applied through the operating shaft to the stop.
- 15/ The SCD must detail the complete procedure for examining resistors for internal defects, such as contact arm misalignment, resistive element flaws, particles, etc., via radiographic inspection.
- 16/ Incorrect, incomplete, or illegible marking shall be considered major defects. However, cosmetic marking defects shall not be counted for purposes of establishing the failure rate. Mechanical and radiographic rejects shall not be counted against the PDA.

	Test Methods, Conditions, and	Quantity (Accept Number)								
Inspection/Test		Con	nposition		Fi	lm/Foil		Wir	ewound	
	Requirements 2/	1	2	3	1	2	3	1	2	3
Group 1	Table 2									
		100%	100%	100%	100%	100%	100%	100%	100%	100%
Group 2		3(0)	3(0)	3(0)	3(0)	3(0)	3(0)	3(0)	3(0)	3(0)
Solderability 4/	MIL-STD-202, Method 208	0	0	0	0	0	0	0	0	0
Resistance to Solvents 5/, 6/	MIL-STD-202, Method 215				0	0		0	0	
Group 3 7/		10(0)	6(0)	3(0)	10(0)	6(0)	3(0)	10(0)	6(0)	3(0)
Thermal Shock 5/	MIL-STD-202, Method 107 Level 1 - 25 cycles Level 2 - 10 cycles Level 3 - 5 cycles	o	0	0			0	ο	0	0
	High temperature - max. rated operating Low temperature - min. rated operating ΔR to specification									
Resistance Temperature Characteristic 5/	MIL-STD-202, Method 304 Specified test temperature sequence Specified reference temperature PPM to specification	0	0		0	0		0	0	
Low Temperature Storage 5/	-65°C no load dwell for 24±4 hours +25°C ambient no load dwell for 2-8 hours ΔR to specification	0			0			0		
Low Temperature Operation 5/	-65°C no load dwell for 1 hour Full rated voltage for 45 minutes 25°C ambient no load dwell for 24 \pm 4 hours Δ R to specification	0			0			0		

Table 3A FIXED RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 1 of 6)

	Test Methods, Conditions, and	Quantity (Accept Number)								
Inspection/Test		Con	nposition		Fi	lm/Foil		Wir	ewound	
	Requirements 2/	1	2	3	1	2	3	1	2	3
Group 3 (continued)										
Short-time Overload 5/	Specified voltage (wattage) multiple	0	0		0	0		0	0	
	Specified temperature									
	Specified time									
	ΔR to specification									
Terminal Strength 5/, 6/	MIL-STD-202, Method 211	0	0	0	0	0	0	0	0	0
	Conditions A and C									
	Applied force to specification									
	ΔR to specification									
Hermetic Seal 8/	Fine leak: MIL-STD-202,Method112				0	0	0			
	Test Condition C									
	5.0 X 10-7 cc/sec.(networks)									
	1.0 X 10-8 cc/sec.(others) Gross									
	Leak: MIL-STD-883, Method 1014				0	0	0			
	Condition D									
Group 4 7/		9(0)	6(0)	3(0)	9(0)	6(0)	3(0)	9(0)	6(0)	3(0)
Dielectric Withstanding	MIL-STD-202, Method 301	0	0	0	0	0	0	0	0	0
Voltage 5/, 6/, 12/	Between leads and conductive material									
	surrounding body									
	Specified test voltage									
	ΔR to specification									
Insulation Resistance	MIL-STD-202, Method 302	0	0	0	0	0	0	0	0	0
6/. 12/	Between leads and conductive material									
	surrounding body									
	Resistance (minimum) to specification									

Table 3A FIXED RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 6)

	Test Methods Conditions and	Quantity (Accept Number)								
Inspection/Test		Con	position	1	Fi	ilm/Foil		Wir	ewound	
	Requirements 2/	1	2	3	1	2	3	1	2	3
Group 4 (continued)										
Resistance to Soldering	MIL-STD-202, Method 210	0	0	0	0	0	0	0	0	
Heat 5/	Test Condition C									
	ΔR to specification									
Moisture Resistance	MIL-STD-202, Method 106				0	0		0	0	
5/, 12/	DC resistance to specification									
	DWV to specification									
	IR to specification									
Terminal Strength 5/, 6/	MIL-STD-202, Method 211	0	0	0	0	0	0	0	0	
	Conditions A and D									
	Applied force to specification									
	ΔR to specification									
Hermetic Seal 8/	Same as Group 3				0	0				
Group 5 7/		9(0)	6(0)		9(0)	6(0)		9(0)	6(0)	
	MIL-STD-202, Method 213	0	0		0	0		0	0	
Shock 5/, 6/	Specified number and direction of applied									
	shocks									
	Specified test condition (g's, pulse time,									
	waveform)									
	ΔR to specification									
Vibration, High	MIL-STD-202, Method 204	0	0		Х	Х		0	0	
Frequency 5/ 6/	Specified test condition (amplitude,									
	frequency range, sweep time and duration)									
	ΔR to specification									
Hermetic Seal 8/	Same as Group 3				0	0				

Table 3A FIXED RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 3 of 6)

	Toot Motheda, Conditiona, and	Quantity (Accept Number)								
Inspection/Test	Test Methods, Conditions, and	Cor	nposition		Fi	ilm/Foil		Wir	ewound	
	Requirements 2/	1	2	3	1	2	3	1	2	3
Group 6 7/		12(0)	9(0)		12(0)	9(0)		12(0)	9(0)	
Life 5/	MIL-STD-202, Method 108									
	Specified test temperature									
	Specified operating conditions									
	ΔR to specification									
	Level 1 - 2000 hours	0			0			0		
	Level 2 - 1000 hours	0	0		0	0		0	0	
Group 7A 7/, 9/					10(0)	5(0)				
Resistance to Bonding 5/	Specified mounting method 4-12 hours stabilization at 25±5°C				0	0				
Moisture Resistance 5/, 12/	MIL-STD-202, Method 106 DC resistance to specification DWV to specification IR to specification				0	Ο				
Group 7B 9/					10(0)	5(0)				
Adhesion 5/	Specified mounting method Specified force, angle, and duration				0	0				
Group 8		5(0)	5(0)		5(0)	5(0)				
Voltage Coefficient 10/	MIL-STD-202. Method 309 Specified continuous working voltage	0	0		0	0				
	Specified resistance range									
	Voltage coefficient to specification									

Table 3A FIXED RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 4 of 6)

	Tast Matheds, Canditians, and	Quantity (Accept Number)									
Inspection/Test	rest methods, conditions, and	Composition			Fi	lm/Foil		Wirewound			
	Requirements 2/	1	2	3	1	2	3	1	2	3	
Group 9					5(0)	5(0)		5(0)	5(0)		
High Temperature	Specified Temperature				0	0		0	0		
Exposure 5/	Specified no load dwell time										
	ΔR to specification										
	DWV to specification										
	IR to specification										
Group 10											
Thermal Outgassing 11/	ASTM E595	0	0	0	0	0	0	0	0	0	
	TML =1.0%maximum										
	CVCM =0.10%maximum										

Table 3A FIXED RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 5 of 6)

Notes:

- 1/ The qualification samples shall be subdivided as specified in the table for Groups 3 through 10 inclusive. Group 2 inspections can be performed on unscreened samples or on samples that have completed one of the other qualification test groups.
- 2/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent ESCC/ military specifications, manufacturer's specification, or the application, whichever is most severe.

3/ These minimum samples sizes are required for qualification:

	Composition	Film	Wirewound
Level 1	45	50	45
Level 2	32	37	32
Level 3	9	9	9

An additional 20 chip resistor qualification samples are required for Level 1 and an additional 10 are required for Level 2.

- 4/ Not applicable for weldable, bondable chip resistors or any type of resistor with "weldable only" leads.
- 5/ External visual examination required after testing to verify no evidence of mechanical damage.
- 6/ Not applicable to chip resistors.
- 7/ To qualify a range of resistance values, equally subdivide the group samples into highest, critical, and lowest resistance values. If the desired resistance range does not span the critical value, equally divide the samples into highest and lowest values except as follows: the extra resistor for odd sample sizes shall be of highest value if the resistance range is below the critical value, or of lowest value if the resistance range is above the critical value. For single resistance value qualification, the sample size shall be as specified for each applicable test group.
- 8/ Applicable only to hermetically sealed networks and high stability filmresistors.
- 9/ Applicable only to chip resistors.
- 10/ Applicable to resistors≥1000 ohms.
- 11/ Materials listed in Revision 3 of NASA Reference Publication<u>1124</u>that meet TML and CVCM limits are acceptable for use without further testing.
- 12/ Applicable to resistors built on insulative layers on conductive substrates (i.e., silicon wagers). Not applicable for dielectric substrates (i.e alumina, Beo, aluminum nitride).,
- 12. RESISTORS

Inspection/Test	Test Methods, Conditions, and Requirements 2/	Non-W	/irewound	ł	Wir	ewound	
		1	2	3	1	2	3
Group 1							
Screening to Table 2A 3/	Table 2A	100%	100%	100%	100%	100%	100%
Group 1A			12(0)	6(0)		12(0)	6(0)
Actual Effective Electrical Travel 4/	Number of turns or angular degrees to specification		0	0		0	0
Absolute Minimum Resistance 5/	Resistance to specification						0
End Resistance 6/	Resistance to specification			0			0
DWV 7/	MIL-STD-202, Method 301 Between terminals tied together and all external metal portions Specified test voltage Leakage current to specification		0	0		0	Ο
IR	MIL-STD-202, Method 302, Test Condition A or B Between terminals tied together and all external metal portions Resistance (minimum) to specification		0	0		0	0
Torque 8/, 9/, 10/	Operating torque to specification Clutch to specification (when applicable) Stop strength to specification (when applicable)			0			0
Group 2		6(0)	3(0)	3(0)	6(0)	3(0)	3(0)
Solderability Resistanceto	MIL-STD-202, Method 208	0	0	0	0	0	0
Solvents 7/	MIL-STD-202, Method 215	0			0		

Table 3B VARIABLE RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 1 of 7)

		Quantity (Accept Number)					
Inspection/Test	Test Methods, Conditions, and Requirements 2/	Non-Wirewound			Wirewound		
		1	2	3	1	2	3
Group 3		12(0)	10(0)		12(0)	10(0)	
Resistance Temperature	MIL-STD-202,Method 304	0	0		0	0	
Characteristic 11/	Specified test temperature sequence						
	Specified reference temperature						
	ppm/°C to specification						
Moisture Resistance 7/, 11/	MIL-STD-202, Method 106	0	0		0	0	
	Modify as follows:						
	1. The resistor samples shall be subdivided into two groups for						
	polarization and loading.						
	2.Polarization - During steps 1 to 6 inclusive, a 100 volt dc potential shall						
	be applied with the positive lead connected to the resistor terminals tied						
	together, and the negative lead connected to the mounting plate.						
	3.Loading - During the first 2 hours of steps 1 and 4, a dc test potential						
	equivalent to 100% rated wattage shall be applied to the resistors through						
	the end terminals.						
	Δ total resistance to specification						
	DWV to specification						
	IR to specification						
Contact Resistance	Contact resistance variation to specification, or Peak	0	0		0	0	
Variation or Peak Noise 12/	noise (resistance variation) to specification						
Group 4		12(0)	9(0)		12(0)	9(0)	
Setability 13/	Setability to specification	0	0		0	0	

Table 3B VARIABLE RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 7)

		Quantity (Accept Number)					
Inspection/Test	Test Methods, Conditions, and Requirements 2/	Non-Wirewound			Wirewound		
		1	2	3	1	2	3
Group 4 (continued)							
Shook (Specified Dulce)	MIL-STD-202, Method 213	0	0		0	0	
	Specified number and direction of applied shocks						
77, 117, 147, 157	Specified test condition (g's, pulse time, waveform) Setting						
	stability (Δ %) to specification						
	Δtotal resistance to specification						
Vibration,	MIL-STD-202, Method 204	0	0		0	0	
High Frequency 7/, 11/,	Specified test condition (amplitude, frequency range, sweep time and						
14/, 15/	duration)						
	Setting stability (Δ %) to specification						
	Δ total resistance to specification						
Contact Resistance Variation	Same as Group 3	0	0		0	0	
or Peak Noise							
12/							
Group 5		9(0)	6(0)	3(0)	9(0)	6(0)	3(0)
Resistance to Soldering	MIL-STD-202, Method 210	0	0	0	0	0	0
Heat 7/, 11/	Test Condition C						
	Δ total resistance to specification						
Low Temperature	Gradually reduce chamber temperature to -55°C in 1.5 hours minimum After 1	0	0		0	0	
Operation 7/, 11/, 15/	hour stabilization at -55°C, measure setting stability						
16/	Apply full rated continuous working voltage for 45 minutes Remeasure						
	setting stability 15 minutes after removing voltage Setting stability						
	(Δ %) to specification						
	Gradually increase to room temperature in 8 hours maximum						
	Maintain at 25±5°C for 24 hours						
	Δtotal resistance to specification						

Table 3B VARIABLE RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 3 of 7)

		Quantity (Accept Number)					
Inspection/Test	Test Methods, Conditions, and Requirements 2/	Non-Wirewound			Wirewound		
		1	2	3	1	2	3
Group 5 (continued)							
Low Temperature	No load dwell at -65°C for 72 hours				0	0	
Storage 7/, 11/	Stabilize to 25±5°C						
	Δtotal resistance to specification						
High Temperature	No load dwell at 150° for 1000 hours	0	0		0	0	
Exposure 7/, 11/, 15/	Within 2 hours: Setting stability (Δ %) to specification						
	∆total resistance to specification						
	DWV to specification						
	IR to specification						
Contact Resistance Variation	Same as Group 3	0	0		0	0	
or Peak Noise		0	0				
12/							
Integrity of Shaft 7/, 11	Specified forces (pull, push, perpendicular) applied to shaft for	0	0		ο	ο	
	specified times	0	0				
	Total resistance to specification						
Group 6		9(0)	6(0)	3(0)	9(0)	6(0)	3(0)
Rotational Life 7/, 11/	Full rated continuous working voltage at 25±5°C 200	0	0	0	0	0	0
16/, 17/	cycles						
	Δtotal resistance to specification						
Contact Resistance Variation	Same as Group 3	0	0	0	0	0	0
or Peak Noise							
12/							

Table 3B VARIABLE RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 4 of 7)
		Quantity (Accept Number)					
Inspection/Test	Test Methods, Conditions, and Requirements 2/		Non-Wirewound		Wirewound		
		1	2	3	1	2	3
Group 6 (continued)							
Terminal Strength 7/, 18/	MIL-STD-202, Method 112	0	0	0	0	0	0
	Condition A						
	Specified force						
	Continuity check						
	Condition A (except reverse force to apply a push force)						
	Continuity check						
Group 7		12(0)	9(0)		12(0)	9(0)	
Life 7/, 11/	MIL-STD-202, Method 108						
	Specified test temperature						
	Specified operating conditions						
	Δ total resistance to specification						
					~		
	Level 1 - 2000 hours	0			0	0	
	Level 2 - 1000 hours		0			0	
Group 8							
Thermal Outgassing 19/	ASTM E595	0	0	0	0	0	0
	TML =1.0%maximum						
	CVCM =0.10%maximum						

Table 3B VARIABLE RESISTOR QUALIFICATION REQUIREMENTS 1/ (Page 5 of 7)

Notes:

- 1/ The qualification samples shall be subdivided as specified in the table for Group 1A and Groups 3 through 8 inclusive. Group 2 inspections can be performed on unscreened samples or on samples that have completed one of the other qualification test groups.
- 2/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent military specifications, manufacturer's specification, or the application, whichever is most severe.

12. RESISTORS

Table 3B VARIABLE RESISTOR QUALIFICATION REQUIREMENTS (Page 6 of 7)

3/ These minimum sample sizes are required for qualification:

Level 1 - 60 resistors Level 2 - 55 resistors Level 3 - 15 resistors

- 4/ The actual effective electrical travel shall be measured by placing the resistor in a suitable device and circuit, which will indicate both angular position of the operating shaft and electrical output. The actual effective electrical travel will be the number of turns, or degrees of rotation, in which a change in contact arm position gives a measurable change in electrical output.
- 5/ The contact arm shall be positioned at the extreme counterclockwise limit of mechanical travel, and the resistance shall be measured between the contact arm and corresponding end terminal. Caution: do not exceed rated current during this measurement.
- 6/ The contact arm shall be so positioned at one end of the resistance element so that a minimum value of resistance can be determined. The same procedure shall be followed for the other end of the resistance element. Caution: do not exceed rated current during this measurement.
- 7/ External visual examination required after testing to verify no evidence of mechanical damage.
- 8/ The torque required to move the contact arm on the resistance element shall be determined at approximately 10, 50, and 90 percent of actual effective electrical travel by the torque wrench method or any suitable equivalent.
- 9/ If the resistor contains a clutch mechanism, the contact arm shall be adjusted to each extreme limit of mechanical travel, and sufficient torque shall be applied to the actuator to permit the contact arm to idle for 25 complete mechanical turns. During idle, a suitable electrical indicating device connected between the contact arm terminal and an adjacent end terminal shall be observed for electrical continuity. After idle, the contact arm shall be rotated in the opposite direction, and the indicating device shall be observed to determine whether the contact arm actually reversed direction.
- 10/ When stop strength is specified, the contact arm shall be rotated to each extreme of mechanical rotation with the specified torque applied through the operating shaft to the stop.

12. RESISTORS

Table 3B VARIABLE RESISTOR QUALIFICATION REQUIREMENTS (Page 7 of 7)

- 11/ Total resistance shall be measured between the end terminals with the movable contact arm positioned against a stop. The positioning of the contact arm and terminal shall be the same for all subsequent measurements of total resistance on the same specimen. The test voltage for total resistance measurements must be specified in the SCD or by the manufacturer (commercial parts).
- 12/ Contact resistance variation or peak noise is a measure of any spurious variations in the electrical output as the contact arm is rotated. It is expressed either as a maximum resistance variation limit, or as a percentage of the total resistance output for the specified rotational travel increment. The output can be observed on an oscilloscope or strip chart recorder, and either method requires calibration to obtain a measure of the peak resistance spikes observed during contact arm rotation. The contact arm shall be rotated in both directions through 90 percent of the actual effective electrical travel for a total of 6 cycles. Only the last 3 cycles shall count in determining whether or not a spurious resistance variation is observed at least twice in the same location, exclusive of the roll-on or roll-off points where the contact arm moves between the termination and resistance element.
- 13/ The movable contact arm shall be set at approximately 30%, 50%, and 75% of mechanical rotation. A dc voltage up to 2.5 volts shall be applied across the end terminals, and the contact arm shall then be adjusted smoothly without abrupt voltage change at each test point.
- 14/ Each resistor shall be monitored during this test to determine electrical discontinuity of the resistance element, and between the contact arm and element, by a method that shall at least be sensitive enough to monitor or register, automatically, any electrical discontinuity of 0.1 millisecond or greater duration.
- 15/ Setting stability in percent shall be determined by placing the movable contact arm at approximately 40% of the actual effective electrical travel. A dc test potential shall be applied between the end terminals. The measured voltage between the contact arm and one end terminal (E1) and the measured voltage between the end terminals (E2) shall be used to determine the setting stability in percent using the following formula: Setting stability (%) = (E1 X 100)/E2.
- 16/ The full rated continuous working voltage, or the voltage equal to rated power, shall be determined by the formula $E = \sqrt{PR}$
- 17/ A cycle shall consist of rotating the movable contact arm through 90 to 100 percent of the actual effective electrical travel and returning to the starting

point. The cycle rate shall be one cycle in 2.5 minutes for multiturn units, and 5 seconds to 2 minutes for single turn units. At no time during this test shall the contact arm be allowed to idle at either end of travel.

- 18/ There shall be no abrupt discontinuities, especially when the direction of travel is reversed, as the contact arm is rotated at a uniform rate back and forth two times across the actual effective electrical travel. During rotation, a suitable electrical device shall be connected between the contact arm and either end terminal to monitor the change in resistance or voltage.
- 19/ Materials listed in Revision 3 of NASA Reference Publication <u>1124</u>that meet TML and CVCM limits are acceptable for use without further testing.

13: FILTERS

Table 1 FILTER REQUIREMENTS

		Screen to Requirements in	Qualify to Requirements in
Procurement Specification	<u>Use As Is</u>	<u>Table 2 1/</u>	<u>Table 3 1/</u>
Level 1			
ESCC 3008	0		
MIL-PRF-28861, Class S	0		
MIL-PRF-28861, Class B 2/	0		
SCD		0	0
Level 2			
ESCC 3008	0		
MIL-PRF-28861, Class S	0		
MIL-PRF-28861, Class B	о		
MIL-PRF-15733		0	
SCD		0	0
Mfr HI- REL or Commercial		0	0
Level 3			
ESCC 3008	0		
MIL-PRF-28861, Class S	0		
MIL-PRF-28861, Class B	0		
MIL-PRF-15733	0		
SCD		0	
Mfr HI- REL or Commercial		0	

Notes:

1/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (ESCC, military or SCD) need not be repeated. However, lot specific attributes data for screening tests, and lot specific or generic attributes data as applicable to various test

groups of qualification tests must be submitted to show that tests were performed with acceptable results.

2 / Class B filters are acceptable as Level 1 parts only when Class S filters are not available.

Table 2 SCREENING REQUIREMENTS FOR FILTERS

	Inspection/Test	Test Methods, Conditions, and	Level 1		Level 2		
		Requirements Reference MIL-PRF-28861	SCD	SCD	MIL-PRF-	HI- REL or	HI- REL or
					15733	Commercia I	Commercia I
1.	VisualInspection	Elements and subassemblies in accordance	0				
		with paragraph 4.6.1.2.					
2.	ExternalVisual1/	Dimensions, marking, workmanship.	0	0		0	0
3.	ThermalShock	MIL-STD- 202, Method 107 Condition A except	0	0	0	0	
		step 3 shall be 125 °C.					
4.	VoltageConditioning	MIL-STD-202, Method 108, 125°±3 °C. 2 x	O 2/, 3/	0	0	0	0
	(Burn-In)	rated voltage for DC rated. 1.2 x rated AC					
	Duration (Hours)	voltage at max. rated frequency for AC, AC/DC	240	160	96	160	48
		rated.					
5.	InsulationResistanceor	MIL-STD-202, Method 302, rated DC	0	0	0	0	0
	DC Leakage Current 4/	voltage applied for 2 minutes max.,					
		charging current of 50 mA max.					
6.	CapacitancetoGround	MIL-STD-202, Method 305, 1.0±.2V RMS.	0	0	0	0	0
-		1 Mhz±100khz for capacitors≤100 pF. 1khz	_	-		-	_
		±100Hz for capacitors≥100 pF.					
7.	DissipationFactor	Frequency and voltage specified in 6) above.	0	0	0	0	
		Accuracy shall be ± 2 percent.					
8.	InsertionLoss	MIL-STD-220 and paragraph 4.6.5.	0	0	0	O 4/	
9.	VoltageDrop	AC and DC, paragraph 4.6.6.	0	0		0	
10.	RadiographicInspection	MIL-STD-202, Method 209, and paragraph 4.6.8.	0				
11. S	eal Test (Hermetic	MIL-STD-202, Method 112.					
	Types Only)			0			
	Gross Leak	Condition A or B.	0	0		0	
	Fine Leak	Condition C.	0				

Notes:

1/ Pure Tin plating is prohibited as a final finish on EEE parts.

- 2/ Grade 1 filters shall be torqued in place and insulation resistance measured at 125 °C before removing filter from plate.
- 3/ Polarity shall be reversed after first 24 to 72 hours. Refer to MIL-PRF-28861 paragraph 4.6.2.2.2 and Figure 1 for test circuit
- 4/ Shall be measured within 1 hour after voltage conditioning

•

.

	Test Methods and	Quantity (Accept Number)			
	Procedures MIL-	Level 1	Level 2	Level 3	
	PRF-28861		SCD, HI-REL		
Inspection Test	Paragraph	SCD	or Commercial		
Group 1		4(0)	4(0)		
Resistance to Solvents	3.21, 4.6.15	0	0		
Resistance to Soldering Heat	3.25, 4.6.20	0	0		
Solderability	3.31, 4.6.25	0	0	Not	
Thermal Strength	3.29, 4.6.23	0	0	NOC	
Group 2		5(0)	5(0) OR 10(1)		
Shock (Specified Pulse)	3.28, 4.6.22	O (1,500 Gs)	O (100 Gs)	Required	
Vibration (High Frequency)	3.22, 4.6.16	0	0		
Random Vibration	3.23, 4.6.17	0			
Moisture Resistance	3.30, 4.6.24	0	0		
Seal (When Applicable)	3.15, 4.6.9	0	0		
Destructive Physical Analysis	3.27, 4.6.21	0	0		
Group 3		22(0)	10(0)		
Life	3.32, 4.6.26	0	0		

Table 3 QUALIFICATION TEST REQUIREMENTS FOR FILTERS 1/

Notes:

1/ Samples shall be selected from parts that have passed the screening requirements in Table 2.

1 4 : F U S E S

Table 1 FUSE REQUIREMENTS 1/, 4/, 5/

		Reference			
Procurement Specification	Fuse Style and Type	Specification	Level 1	Level 2	Level 3
ESCC 4008	Fuse, wire link≥5A and CERMET	ESCC 4008	1/	1/	1/
Mil Specification	FM Fuse,Cartridge,InstrumentType	MIL-PRF-23419	2/	2/	2/
SCD			3/	3/	3/
Commercial				3/	3/

Notes:

- 1/ Burn-in (168hours/85°C/50% rated current) is mandatory on each lot/date code for wire link fuse
- 2/ Fuses shall be screened in accordance with Table 2.
- 3/ Fuses must meet the screening and qualification requirements of Tables 2 and 3.
- 4/ Any test required by Tables 2 and 3 that is already performed by the procurement specification (military or SCD) need not be repeated. However, lot specific attributes data for screening tests, and lot specific or generic attributes data as applicable to various test groups of qualification tests must be submitted to show that tests were performed with acceptable results.
- 5/ Table 2 (screening) and Table 3 (qualification) are not appropriate for resettable polymer-based fuses. Presently, there is no standard qualification plan for space applications for the polymer-based fuses.

Table 2 FUSE SCREENING REQUIREMENTS

			Level	
Inspection/Test	Test Methods, Conditions, and Requirements 1/	1	2	3
1. Visual Inspections 2/	Materials, design, construction, marking, and workmanship	0	0	0
2. Mechanical Inspections 3/	Body and lead dimensions to specification	0	0	0
3. Resistance (Cold) 4/	MIL-STD-202, Method 303 Resistance to specification	0	0	0
4. Voltage Drop (Hot-1) 5/	100% rated current for 5 minutes (minimum) Voltage drop to	0	0	0
	specification (when specified)			
5. Thermal Shock 6/, 7/	MIL-STD-202, Method 107 Condition B	0	0	0
6. Voltage Drop (Hot-2) 5/	100% rated current for 5 minutes (minimum) Ratio	0	0	0
	voltage drop: (Hot-1/Hot-2) = 0.97 to 1.03			
7. Resistance (Cold) 4/	MIL-STD-202, Method 303	0	0	0
	Resistance to specification			
8. Seal	MIL-STD-202, Method 112	0	0	0
	Test Condition A			
9. Percent Defective	Level 1—5%	0		
Allowable (PDA) 8/	Level 2—10%		0	
	Level 3—15%			0

Notes:

- 1/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent military specifications, manufacturer's specification, or the application, whichever is most severe.
- 2/ The use of pure tin plating is prohibited as a final finish or undercoat.
- 3/ A minimum of three fuses shall be measured.
- 4/ The source current for the resistance measurement shall not exceed 10% of the nominal current rating at room temperature. If the resistance of the fuse is not specified, a continuity check shall be substituted.
- 5/ The voltage drop (hot) measurement must be recorded to calculate the voltage drop ratio regardless of whether or not it is a specification

requirement. Not applicable for SMT fuses.

- 6/ External visual examination required after testing to verify no evidence of mechanical damage.
- 7/ Fuse rated < +125 °C shall be tested to Condition A.
- 8/ Incorrect, incomplete, or illegible marking shall be considered major defects. Cosmetic marking defects and voltage ratio rejects shall not be counted for purposes of establishing the failure rate.

		Quar	ntity (Accept Number)	
Inspection/Test	Test Methods, Conditions, and Requirements 1/	Level 1	Level 2	Level 3
Group 1	Samples shall be selected from parts that have			
	passed the screening requirements in Table 2.			
Screening to Table 2	Table 2	100%	100%	100%
Group 1A		12(0)	8(0)	4(0)
Current-Carrying Capacity 2/, 3/	Specified percentage of rated current at -60 °C,	0	0	0
	25 °C, and at maximum rated temperature			
	Load Time: 30 minutes after temperature			
	stabilization but not less than 1.5 hours			
	Case temperature rise:≤70 °C (unless otherwise			
	specified)			
Group 2		4(0)	2(0)	
Terminal Strength 3/, 7/	MIL-STD-202, Method 211	0	0	
	Test condition A or E (as applicable)			
	Specified applied force			
	Plug or lead terminals:			
	Along terminal axis			
	Ferrule type terminals: torque			
Overload Interrupt 3/, 4/	Specified percentage of rated current at -20 °C,	0	0	
	25 °C, and at maximum rated temperature			
	Temperature soak time: 30 minutes minimum Load			
	time: 1 minute after fuse blow Insulation resistance			
	to specification within 1 minute			

Table 3 FUSE QUALIFICATION REQUIREMENTS (Page 1 of 4)

		Quantity (Accept Number)				
Inspection/Test	Test Methods, Conditions, and	Level 1	Level 2	Level 3		
	Requirements 1/					
Group 2 (Continued)						
Insulation Resistance 7/	MIL-STD-202 Method 302	0	0			
	Specified test condition	Ŭ	Ũ			
	Between leads and conductive material					
	surrounding body					
	Minimum resistance to specification MIL-					
Solderability (When Applicable)	·	0	0			
	STD-202, Method 208					
Group 3		2(0)				
Short Circuit 3/	Specified current and voltage	0				
	Temperature soak time: 30 minutes minimum Load					
	time: 1 minute after fuse blow Insulation resistance					
	to specification within 1					
	minute					
Group 4 8/		2(0)	2(0)			
Vibration, High Frequency	MIL-STD-202, Method 204	0	0			
3/	Specified test condition (amplitude, frequency					
	range, sweep time and duration)					
Continuity	Electrical continuity intact MIL-	0	0			
Shock, Specified Pulse 3/	STD-202, Method 213	0	0			
	Specified number and direction of applied					
	Specified test condition (Gs. pulse time					
	waveform)					
Continuity	Electrical continuity intact	0	0			

Table 3 FUSE QUALIFICATION REQUIREMENTS (Page 2 of 4)

		Quantity (Accept Number)				Quantity (Accept Number)		
Inspection/Test	Test Methods, Conditions, and Requirements 1/	Level 1	Level 2	Level 3				
Group 5		4(0)	4(0)	4(0)				
Moisture Resistance 3/	····	0	0					
	MIL-STD-202, Method 106							
	Specified polarizing voltage							
Thermal Shock 3/, 5/	MIL-STD-202, Method 107			0				
	Test condition B Electrical							
Continuity	continuity intact			0				
Resistance to Soldering	MIL-STD-202, Method 210	0	0					
Heat 3/	Specified solder temperature							
	Specified dwell time Electrical							
	continuity intact							
Current-Carnying Canacity	Same as group 1A except 100% maximum rated	0						
3/	current at room ambient only	Ũ						
Overload Interrupt 3/, 4/	Same as group 2 except at room ambient only	О						
Insulation Resistance 7/	MIL-STD-202, Method 302	0	0					
	Between leads and conductive material							
	surrounding body							
	Specified minimum resistance							
Group 6								
Thermal Outgassing 6/	ASTM E595	о	0	0				
	TML = 1.0% maximum	_	-	-				
	CVCM = 0.10% maximum							

Table 3 FUSE QUALIFICATION REQUIREMENTS (Page 3 of 4)

Table 3 FUSE QUALIFICATION REQUIREMENTS (Page 4 of 4)

Notes:

- 1/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent ESCC or military specifications, manufacturer's specification, or the application, whichever is most severe.
- 2/ The group 1A samples shall be subdivided as specified in the table for groups 2 to 6, inclusive. These minimum sample sizes are needed for qualification:

Level 1 — 12 fuses Level 2 — 8 fuses Level 3 — 4 fuses

- 3/ External visual examination required after testing to verify no evidence of mechanical damage.
- 4/ The power supply shall have an open-circuit voltage not less than the specified voltage rating of the fuse under test.
- 5/ Fuses rated < +125 °C shall be tested to condition A.
- 6/ Materials listed in NASA Reference Publication 1124 that meet TML and CVCM limits are acceptable for use without further testing.
- 7/ Not applicable for SMT fuses.
- 8/ Not applicable for SMT fuses utilizing thick or thin film technologies. Hollow SMT fuses constructed with wirein-air technology shall be subjected to the group 4 inspections.

15: THERMISTORS

Table 1 THERMISTOR REQUIREMENTS 1/

Procurement Specification		Thermistor Style and Type	ESCC/ MIL/ NASA Reference			
			Specification	Level 1	Level 2	Level 3
Positive Temp. Coeff.						
ESCC Specification		Resistor, Thermally Sensitive	ESCC 4006	0	0	0
Mil Specification	RTH	Resistor, Thermal, Insulated	MIL-PRF-23648	0	0	0
SCD				2/	2/	2/
Commercial					2/	2/
Negative Temp. Coeff.						
ESCC Specification		Resistor, Thermally Sensitive	ESCC 4006	0	0	0
MIL/NASA Specification	RTH	Resistor, Thermal, Insulated	MIL-PRF-23648	0	0	0
	311P18	Thermistor, Insulated, and Uninsulated	S-311-P-18	0	0	0
	311-424	Thermistor,SuperStable,Encapsulated	<u>S-311-424</u>	3/	3/	3/
	311P767	Thermistor,HermeticallySealed,Cryogenic	<u>S-311-P-767</u>	3/	3/	3/
SCD				2/	2/	2/
Commercial					2/	2/

Notes:

- 1/ Character "O" designates use as is. Tests that are required by the procurement specification and/or are performed normally by the manufacturer need not be repeated by the user. However, evidence must be submitted indicating that test conditions were acceptable and that tests were performed with acceptable results.
- 2/ Thermistors procured to SCDs or commercial thermistors must meet the screening and qualification requirements of Tables 2 and 3.
- 3/ Thermistors may be used as is if listed in the GSFC Qualified Parts List Directory (QPLD).

15. THERMISTORS

Table 2 THERMISTOR SCREENING REQUIREMENTS (Page 1 of 4)

		Part Type					
	Test Methods, Conditions, and	Posit	ive Temp.		Nega	ative Temp.	
Inspection/Test	Requirements 1/	Coefficient			Coefficient		
		Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
1. Visual Inspections	Materials, design, construction, marking, and workmanship	0	0	0	0	0	0
2. Mechanical Inspections 2/	Body and lead dimensions to specification	0	0	0	0	0	0
3. Preconditioning 3/	+125 °C for 5 days min. followed by +50	0	0	0	0	0	0
	°C for 5 days min., unless otherwise specified by the manufacturer						
4. Zero-Power Resistance	MIL-STD-202, Method 203	0	0	0	0	0	0
4/, 5/, 6/	1.Measure zero-power resistance at specified reference temperature						
	2.Measure zero-power resistance at +125 °C or max. rated operating						
	temperature						
	3.Remeasure zero-power resistance at						
	specified reference temperature						
	$4.\Delta R$ (zero-power) to specification						
5. Resistance Ratio	If ΔR (zero-power) is to specification, compute			0			о
Characteristic 5/, 6/	resistance ratio using the zero- power resistance						
	at the reference temperature and at +125 °C or						
	the specified max. rated operating temperature.						
	Resistance ratio: either R(zero-power ref						
	temp)/R(zero-power +125 °C) or R(zero-						
	power ref temp)/R(zero-power max. operating)						
	to specification.						

		Part Type					
	Test Methods, Conditions, and	Positive Temp.			Negative Temp.		
Inspection/Test	Requirements 1/	Coef	ficient		Coefficient		
		Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
6. Thermal Shock 5/, 6/, 7/	MIL-STD-202, Method 107						
	Level 1 – 25 cycles	0			0		
	Level 2 – 10 cycles		0			0	
	High temperature – +125 °C or max. rated operating temperature Low temperature – Min. rated operating temp.						
7. High Temperature Storage 5/, 6/, 7/, 8/	+125 °C or max. rated operating temperature, 100 hours, no load	0	0		0	0	
8. Zero-Power Resistance 4/, 5/, 6/	 MIL-STD-202, Method 203 1.Measure zero-power resistance at specified reference temperature 2.ΔR (zero-power) to specification 	0	0		0	0	
9. Insulation Resistance 8/	MIL-STD-202, Method 302 Between leads and conductive material surrounding body Specified minimum resistance	0	0		0	0	

Table 2 THERMISTOR SCREENING REQUIREMENTS (Page 2 of 4)

				Part ⁻	Гуре		
	Test Methods, Conditions, and		Positive Ter	mp.		Negative Te	mp.
Inspection/Test	Requirements 1/	Coeff	ficient		Coeff	ficient	
		Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
10. Resistance Temperature Characteristic 4/, 5/, 6/	 Specified temperature points Stabilization time≥10 times the thermal time constant Zero-power resistance at each temperature point Resistance curve to specification within tolerance limits at each temperature point Temperature points: Level 1 – Reference temperature, each temperature extreme, and a minimum of three points between reference temperature and each temperature extreme Level 2 – Reference temperature, each temperature extreme, and a minimum of one point between reference temperature and each temperature extreme 	0	0		0	0	
11. Percent Defective Allowable (PDA) 9/	Level 1 – 5% Level 2 – 10%	0	0		0	0	

Table 2 THERMISTOR SCREENING REQUIREMENTS (Page 3 of 4)

Notes:

- 1/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent ESCC/ military specifications, manufacturer's specification, or the application, whichever is most severe.
- 2/ A minimum of three thermistors shall be measured.

Table 2 THERMISTOR SCREENING REQUIREMENTS (Page 4 of 4)

- 3/ Applicable only for surface mount thermistors.
- 4/ Zero-power resistance shall be measured in a controlled uniform medium capable of maintaining an accuracy of ±0.01°C for beads (any mounting construction) and ±0.05 °C for all other types. The resistance shall be measured using a Wheatstone bridge (or equivalent), accuracy to ±0.05% or better, with time response less than the thermal time constant of the thermistor under test.
- 5/ The specified reference temperature is usually ambient +25 °C. However, since the resistance curve tolerance varies on either side of this reference ambient, for particular applications it may be advantageous to specify the reference temperature at some other point, up to and including the temperature extremes. If a temperature extreme is used as the reference temperature, the complementary temperature for zero-power resistance and resistance ratio shall be the midpoint temperature between the temperature extremes. If the high temperature extreme is < +125 °C, this temperature shall be used for thermal shock and high temperature storage testing.</p>
- 6/ Never expose a thermistor to an ambient temperature greater than its maximum operating temperature during testing under no-load conditions. Such exposure, even for brief periods, can permanently destabilize the thermistor if the Curie temperature is exceeded. The maximum operating temperature, which can be determined from the power rating, is the maximum body temperature at which the thermistor will continue to operate with acceptable stability of its characteristics. The temperature at which the power has been linearly derated to 0% corresponds to the maximum ambient temperature under no-load conditions.
- 7/ External visual examination required after testing to verify no evidence of mechanical damage.
- 8/ Not applicable for surface mount thermistors.
- 9/ Incorrect, incomplete, or illegible marking shall be considered major defects. However, cosmetic marking defects shall not be counted for purposes of establishing the failure rate.

		Quantity (Accept Number)					
	Test Methods, Conditions, and	Posit	ive Temp.		Nega	itive Temp.	
Inspection/Test	Requirements 1/	Coefficient			Coefficient		
		Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
Group 1							
Screening to Table 2 2/	Table 2	0	0		0	0	
Group 2		3(0)	3(0)		3(0)	3(0)	
Solderability	MIL-STD-202, Method 208	0	0		0	0	
(when applicable)							
Resistance to Solvents 3/	MIL-STD-202, Method 215	0	0		0	0	
Group 3		10(0)	5(0)		10(0)	5(0)	
Short Time Overload 3/	Specified zero-power resistance	0	0		0	0	
	Use dissipation constant and resistance value to						
	compute average voltage and current at						
	maximum power rating						
	Energize time: 5 minutes at specified						
	reference temperature						
	De-energize for 10 minutes						
	Repeat for 10 complete cycles						
	ΔR (zero-power) to specification						
Dielectric Withstanding	MIL-STD-202, Method 301	0	0		0	0	
Voltage 3/, 4/	Between leads and conductive material						
	surrounding body						
Insulation Resistance 4/	MIL-STD-202, Method 302	0	0		0	0	
	Between leads and conductive material						
	surrounding body						
	Specified minimum resistance						
Low Temperature	Specified low temperature for 3 hours min.	0	0		0	0	
Storage 3/	ΔR (zero-power) to specification						

Table 3 THERMISTOR QUALIFICATION REQUIREMENTS (Page 1 of 4)

			Qua	ntity (Accept N	Number)		
	Test Methods, Conditions, and	Posit	ive Temp.		Nega	tive Temp.	
Inspection/Test	Requirements 1/	Coefficient		Coefficient			
		Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
Group 3 (continued)							
Dissipation Constant	Specified zero-power resistances	0	0		0	0	
	Specified test chamber, chamber						
	temperature, or temperature controlled bath						
	Specified test circuit schematic						
	Loading to specified voltage and current levels						
	Specified load dwell time						
	Specified dissipation formula Dissipation						
	constant to specification						
Thermal Time Constant	Specified zero-power resistances	0	0		0	0	
5/	Specified test chamber, chamber						
	temperature and controlled temperature						
	bath (if applicable)						
	Specified test circuit schematic						
	Loading to specified voltage and current levels						
	Specified load dwell time						
	Specified vertical travel and travel rate (if						
	applicable)						
	Thermal time constant to specification						
Terminal Strength 3/, 4/	MIL-STD-202, Method 211	0	0		0	0	
	Test Condition A (disk and bead types) Test						
	Conditions A and D (rod types)						
	ΔR (zero-power) to specification						

Table 3 THERMISTOR QUALIFICATION REQUIREMENTS (Page 2 of 4)

		Quantity (Accept Number)					
	Test Methods, Conditions, and	Posit	ive Temp.		Nega	tive Temp.	
Inspection/Test	Requirements 1/	Coefficient		Coeff			
		Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
Group 4		5(0)	3(0)		5(0)	3(0)	
Resistance to Soldering Heat 3/	MIL-STD-202, Method 210 Specified solder temperature	0	0		0	0	
	Specified dwell time ΔR (zero-power) to specification						
Moisture Resistance 3/	 MIL-STD-202, Method 106 Loading: 50% at maximum rated power 50% at no load IR to specification ΔR (zero-power) to specification 	0	0		0	0	
Group 5		10(0)	5(0)		10(0)	5(0)	
Load Life 3/	MIL-STD-202, Method 108 Specified zero-power reference temperature Specified maximum rated power, 1.5 hours on, 0.5 hours off						
	Level 1 – 1000 hours Level 2 – 500 hours	0	0		0	0	
Group 6							
Thermal Outgassing 6/	ASTM E595_ TML = 1.0% maximum CVCM = 0.10% maximum	0	Ο	0	0	0	0

Table 3 THERMISTOR QUALIFICATION REQUIREMENTS (Page 3 of 4)

Table 3 THERMISTOR QUALIFICATION REQUIREMENTS (Page 4 of 4)

Notes:

- 1/ It is the responsibility of the user to specify detailed test conditions and pass/fail criteria for each test. These values shall be based on the nearest equivalent military specifications, manufacturer's specification, or the application, whichever is most severe.
- 2/ The qualification samples shall be subdivided as specified in the table for Groups 3 through 6, inclusive. Group 2 inspections can be performed on unscreened samples or on samples that have completed one of the other qualification test groups. These minimum samples sizes are required for qualification: Level 1 25 thermistors; level 2 13 thermistors.
- 3/ External visual examination required after testing to verify no evidence of mechanical damage.
- 4/ Not applicable for surface mount thermistors.
- 5/ A controlled temperature bath and drive mechanism are used for beads in probes and beads in rods.
- 6/ Materials listed in Revision 3 of NASA Reference Publication <u>1124</u>that meet TML and CVCM limits are acceptable for use without further testing.

16: WIRE AND CABLE

GENERAL

The following information is unique to this section.

- (1) Table 1B provides a detail description of available wire and cable as an aid to designers.
- (2) Table 1C delineates the properties, advantages, and disadvantages of available wire insulator materials.
- (3) Depending on the application, outgassing, atomic oxygen and ultraviolet radiation degradation may need to be considered in selecting wire for space application.

PROCURMENT REQUIREMENTS

Wire and cable should be procured to ESCC or military specifications from qualified manufacturers as much as possible. A Certificate of Conformance should be requested for delivery with the order. Each spool must be permanently and legibly identified with manufacturer's cage code or manufacturer's name, ESCC/ military part number, length, size (AWG) and lot or date code of manufacture that can be used for traceability and age control.

FLAMMABILITY

Insulation materials shall be non-combustible or self extinguishing. Selection and use shall be traceable to acceptable flammability test reports in MSFC Handbook 527. When no test report exists, flammability testing shall be performed using the procedure of <u>NASA-STD-6001</u>, previously NHB 8060.1C (Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion) or as otherwise specified.

OUTGASSING

Outgassing occurs in vacuum environments when unreacted additives, contaminants, absorbed gasses or moisture can evaporate from molding materials and ink. These outgassed materials can condense on cold surfaces causing performance degradation. Outgassed materials can also become more rigid or brittle. Nonmetallic materials shall not exceed 1% Total Mass Loss (TLM) or 0.1% Collected Volatile Condensable Material

(CVCM) when tested in accordance with ASTM-E595 (Test Method, Outgassing).

CRYOGENIC APPLICATIONS

There are no wires or cables that are officially rated for use in low temperature/ cryogenic applications below -200° C. However, experience has proven it is possible for many Teflon m insulated wires to be used successfully at cryogenic temperatures. It is recommended that samples from each prospective flight spool proposed for use at cryogenic temperature should be subjected to five cycles of cryogenic temperature cycling using sufficient low temperature to qualify wire for the intended application. Samples should be inspected for cracks and splits. If the cables are to be formed into a particular configuration, some forming of the samples prior to testing is recommended or samples should be wound on a mandrel prior to temperature cycling.

ATOMIC OXYGEN DEGRADATION

Wire and cable users need to be cautious of the corrosive effects atomic oxygen can have on wire and cable exposed to external surfaces of satellites flown in lower earth orbits (LEO). Atomic oxygen is a strong oxidizing agent, which can change silver plating to a non-conductive finish.

Polyamide insulation is rapidly degraded by exposure to atomic oxygen. All insulations may experience physical erosion such as flaking. For multi-year missions in lower earth orbits, the use of unprotected thin wall insulated wire is not recommended.

HANDLING PRECAUTIONS

1. Wire insulation can be damaged by solvents used to clean cable assemblies. Incomplete solvent removal can result in slow degradation of the insulation and/or contamination of surrounding hardware when installed and stored in sealed containers or used in a confined environment. The problem can be eliminated by performing a bakeout of the completed cable assembly after cleaning, rather than rinse, blow dry and package for storage. Solvents have been shown to degrade KaptonTMinsulation's mechanical strength, resulting in flaking of the outer insulation tape, and cracking. Solvents can cause fluorinated polymers such as TefzelTMinsulation to release trace amounts of fluorine that can react with

surrounding components resulting in corrosion to metals and other degradation.

2. Silver-coated copper wire can become corroded with powdery cuprous oxide ("red plague") when moisture is absorbed and penetrates through pinholes or other breaks in the silver plating, and invades the silver-copper interface. The methods used to produce and store silver coated wire must be controlled. Water quenching should not be used during the wire fabrication process. Wet dielectric testing (dunk testing) should not be used. The storage environment for this wire should be controlled to reduce humidity, from the manufacture through the distributor and user. Completed wire should be shipped and stored with capped ends to prevent moisture penetration.

	Level 1		Leve	2	Level 3		
Procurement Specification	Mil /	Com'l/	Mil /	Com'l/	Mil /	Com'l/	
	ESCC	SCD	ESCC	SCD	ESCC	SCD	
Insulated Hookup Wire							
MIL-W-22759*	0		0		0		
<u>MIL-W-81044*</u>	0		0		0		
SCD		2/, 3/		2/, 3/		2/	
Commercial		2/, 3/		2/, 3/		2/	
Coated Magnet Wire 4/							
MWXX-C (HEAVY)	0		0		0		
SCD		2/, 3/		2/, 3/		2/	
Commercial		2/, 3/		2/, 3/		2/	
Multiconductor Cable 5/							
<u>NEMA-WC27500</u>	0		0		0		
SCD		2/		2/		2/	
Commercial		2/		2/		2/	
Coaxial and Twinaxial Cable							
<u>MIL-C-17</u>	0		0		0		
SCD		2/, 3/		2/, 3/		2/	
Commercial		2/, 3/		2/, 3/		2/	
Flexible Printed Circuit Cable							
SCD		2/, 3/		2/, 3/		2/	
Commercial		2/, 3/		2/, 3/		2/	
Low Frequency Wires and Cables (for ESCC)							
ESCC 3901	0		0		0		
High Frequency Wires and Cables (for ESCC)							
ESCC 3902	0		0		0		

Table 1A WIRE AND CABLE REQUIREMENTS 1/

Notes:

1/ For a detailed description of available wire and cable configurations, refer to Table 1B. The character "O" indicates use as is.

- 2/ Screening to Table 2 is required. Lot specific screening attributes data may be acquired and reviewed for acceptability in lieu of performing the required testing if the data satisfies the requirements of Table 2.
- 3/ Qualification to the requirements of Table 3 is required. Lot specific QCI attributes data may be acquired and reviewed for acceptability in lieu of performing the required testing if the data satisfies the requirements of Table 3.
- 4/ Reference NEMA Standard MW-1000, which supersedes Federal Specification <u>J-W-1177</u>. See Table 1 Note 9 of section M1 for acceptable table magnet wire sizes.
- 5/ Qualification of completed cable is not a requirement. However, qualification of the individual conductor components within the cable is required and shall be performed to the nearest military hookup wire specification or SCD. All materials used for insulation jacket material or cable fillers shall be traceable to acceptable outgassing and flammability test reports.
- * These documents and their detailed slash sheets have been adopted by SAE (The Engineering Society for Advancing Mobility Land Sea Air and Space) in 2000. The SAE document numbers are AS22759 and AS81044. They can be accessed from the SAE web address: <u>http://www.sae.org</u>.

Table 1B WIRE AND CABLE TYPES

Procurement	
Specification	Description 1/
PTFE Insulated (Teflon-Polytetraflue	proethylene), Copper or Copper Alloy
MIL-W-22759/11	Silver Coated, 600 Volt, 200°C
MIL-W-22759/12	Nickel Coated, 600 Volt, 260°C
MIL-W-22759/22	Silver Coated, 600 Volt, 200°C (High Strength)
MIL-W-22759/23	Nickel Coated, 600 Volt, 260°C (High Strength)
MIL-W-22759/9	Silver Coated, 1000 Volt, 200°C
MIL-W-22759/20	Silver Coated, 1000 Volt, 200°C (High Strength)
ETFE Insulated (Ethylene Tetrafluor	rethylene), Copper or Copper Alloy
MIL-W-22759/44	Crosslinked ETFE, Silver Coated, 600 Volt, 200 °C, Light Weight
MIL-W-22759/43	Crosslinked ETFE, Silver Coated, 600 Volt, 200 °C, Normal Weight
MIL-W-22759/33	Crosslinked ETFE, Silver Coated, 600 Volt, 200°C, Light Weight (High Strength)
MIL-W-22759/35	Crosslinked ETFE, Silver Coated, 600 Volt, 200°C, Normal Weight (High Strength)
MIL-W-22759/45	Crosslinked ETFE, Nickel Coated, 600 Volt, 200°C, Light Weight
MIL-W-22759/41	Crosslinked ETFE, Nickel Coated, 600 Volt, 200°C, Normal Weight
PTFE Fluorocarbon/Polyamide (Kap	pton), Insulated, Copper or Copper Alloy 8/
MIL-DTL-22759/86	Silver Coated, 600 Volt, 200°C, Normal Weight
MIL-DTL -22759/87	Nickel Coated, 600 Volt, 260°C, Normal Weight
MIL-DTL -22759/89	Silver Coated, 600 Volt, 200°C, Normal Weight (High Strength)
MIL-DTL -22759/90	Nickel Coated, 600 Volt, 260°C, Normal Weight (High Strength)
MIL-DTL -22759/91	Silver Coated, 600 Volt, 200°C, Light Weight
MIL-DTL -22759/92	Nickel Coated, 600 Volt, 200°C, Normal Weight
Crosslinked Polyalkene/Crosslinked	PVDF, Copper and Copper Alloy
GSFC S-311-P-13/1	Tin Coated Copper, 600V, 135°C 3/
GSFC_S-311-P-13/2_	Tin Coated Copper, 1000V, 135°C 3/

GSFC <u>S-311-P-13/3</u>	High Voltage, Tin Coated Copper, 2500V, 135°C 3/
MIL-W-81044/7	Silver coated Copper, 600V, 150°C (High Strength)
MIL-W-81044/12	Tin Coated Copper, 600V, 150°C, Light Weight 3/
Chemically Coated Copper Magnet	Wire 2/
MW-28-C (HEAVY)	Polyurethane Overcoated with Polyamide, Heavy Enameled, 130°C
	(Supersedes M1177/9-02C0XX)
MW-30-C (HEAVY)	Polyester-Amide-Imide, Heavy Enameled, 180°C
	(Supersedes M1177/12-02C0XX)
MW-35-C (HEAVY)	Polyester-Amide-Imide, Overcoated with Polyamideimide, Heavy Enameled, 200°C
	(Supersedes M1177/14-02C0XX)
MW-16-C (HEAVY)	Polyamide, Heavy Enameled, 220°C (Supersedes M1177/15-02C0XX)
Procurement	Description 1/
----------------------	---
Specification	
Multiconductor Cable	
NEMA-WC27500 10/	PTFE or ETFE insulated, Multiconductor, Shielded and Unshielded, Jacketed and Unjacketed.
Coaxial Cable 4/	
MIL-C-17/60	Flexible, Double Braid Shield, FEP Jacket, 12.4 GHZ Max, 50 OHMS, 200°C Max, RG 142 Type
MIL-C-17/93 6/	Flexible Single Braid Shield, FEP Jacket, 3 GHZ Max, 50 OHMS, 200°C Max, RG 178 Type
MIL-C-17/95 5/, 6/	Flexible Single Braid Shield, FEP Jacket, 3 GHZ Max, 95 OHMS, 200°C Max, RG 180 Type
MIL-C-17/110 5/	Flexible Single Braid Shield, FEP Jacket, 3 GHZ Max, 75 OHMS, 200°C Max, RG 302 Type
MIL-C-17/111	Flexible Single Braid Shield, FEP Jacket, 3 GHZ Max, 50 OHMS, 200°C Max, RG 303 Type
MIL-C-17/113	Flexible Single Braid Shield, FEP Jacket, 3 GHZ Max, 50 OHMS, 200 °C Max, RG 316 Type
MIL-C-17/127	Flexible Double Braid Shield, FEP Jacket, 11 GHZ Max, 50 OHMS, 200°C Max, RG 393 Type
MIL-C-17/128	Flexible Double Braid Shield, FEP Jacket, 12.4GHZ Max, 50 OHMS, 200°C Max, RG 400 Type
MIL-C-17/130 7/	Semi Rigid, Seamless Copper Tubing, .141 OD, 20 GHZ Max, 50 OHMS, 125°C Max, RG 402 Type
MIL-C-17/133 7/	Semi Rigid, Seamless Copper Tubing, .086 OD, 20 GHZ Max, 50 OHMS, 125°C Max, RG 405 Type
MIL-C-17/152	Flexible, Double Braid Shield, FEP Jacket, 12.4 GHZ Max, 50 OHMS, 200°C Max.
Twin Axial Cable 4/	
MII -C-17/176	Flexible Single Shield Braid, PFA Jacket, 10 MHZ Max, 77 OHMS, 200°C

Table 1B WIRE AND CABLE TYPES

Bare Bus Wire A-A-59551	Wire, Electrical, Copper (Uninsulated, ref. Type "S" Solid Wire)
Wire Braid <u>A-A-59569</u>	Braid, Wire (Tubular or Flat)
Flexible Printed Circuit	(Used as cable)
IPC-6013	Qualification and Performance Specification for Flexible Printed Boards
<u>MIL-P-50884</u> 9/	Printed Wiring, Flexible and Rigid Flex

Notes on next page.

Table 1B WIRE AND CABLE TYPES

Notes:

- 1/ The following are common trade names for Insulations: PTFE and FEP are Teflon (Dupont); ETFE and Crosslinked ETFE are Tefzel (Dupont); Polyvinylidene Fluoride (PVDF or PVF2) is Kynar (Pennwalt); Polyester is Dacron (Dupont); Polyamide is Kapton (Dupont)
- 2/ NEMA MW<u>1000</u>Magnet Wire. Detail specifications are taken from NEMA Standard MW-1000 and supersede<u>J-W-1177</u>Detail Specifications. For, wire size restrictions, see Table 1A, Note 4. For additional coating options, consult NEMA MW-1000.

MW	030	С	Н	х	000022	n
NEMA			Coating	Additional	Size(AWG)	
Symbol	DetailSpec	Material	Thickness	Information	(Roundcrosssection)	Lubricant
	(Class = temp index, °C / coating material)	C=Copper	S=Single	(LowerCase)	(ex:000022=22AWG)	(LowerCase)
	016 - (Class 240 / Polyamide)	Note2.2	H=Heavy	x=FilmCoatedonly	Detailspec(availablesizerange)	n-None
	030 - (Class 180 / Polyester-Amide-Imide)		Note2.3	b=Doublethickness	016-(000004thru000050)	
	035 - (Class 200 / Polyester-Amide-Imide)			withglassfiber	030-(000004thru000050)	
	(Others available: Note 2.4)				035-(000004thru000044)	

2.1/ Part number explanation:

- 2.2/ Copper is the preferred conductor material.
- 2.3/ Double coated (Heavy) wire is preferred, but requires additional design consideration for flux density, increased device size, and thermalimpedance. Use of single coated wire is discouraged due to increased risk of breakdowns from extra pinholes associated with thinner coating. It is also more prone to handling damage.

- 2.4/ Use of solderable insulations is discouraged due to potential for coating pullback from high temperatures incurred during operation.
- 2.5/ Magnet wire older than two years from manufacture should not be used without retesting. Magnet wire older than five years is prohibited.
- 3/ Tin coated conductors are permitted, but are only permitted with solder type contacts. They are not recommended for use with crimp type contacts.
- 4/ All coaxial cables contain a solid extruded PTFE dielectric core. Twin axial cables contain two PTFE cores and two PTFE fillers.
- 5/ There are no 75 OHM impedance connectors to accommodate this cable. Due to impedance mismatch, performance ratings are not guaranteed.
- 6/ M17/93-RG178 and M17/95-RG180 have very small center conductors measuring 0.012 inches that are easily damaged during striping, soldering or handling. EXTREME caution is required during termination to connectors. Use of cable with larger center conductors is preferred.
- 7/ M17/130-RG-402 and M17/133-RG405 Copper clad semi-rigid coaxial cable shall only be used with solder attached connectors. Crimp or compression type connectors are prohibited.
- 8/ Supersedes <u>MIL-W-81381</u> FEP Fluorocarbon/Polyamide Kapton insulated wire.
- 9/ MIL-P-50884 is inactive for new design, and is superseded by <u>MIL-PRF-31032/3</u>. MIL-PRF-31032/3 does not perform 100% inspections consistent with high reliability product, and as such, <u>MIL-P-50884</u> is preferred over <u>MIL-PRF-31032</u>.

Table 1B WIRE AND CABLE TYPES

10/ <u>NEMA-WC27500(formerly MIL-C-27500)</u> Multiconductor/Shielded/Jacketed Cable

 ^{10.1/} Part number explanation: (With designations for preferred construction.) M22759/11 (Symbol RC) or M22759/43 (Symbol SP) base wire with silver coated copper single layer shield (Symbol S) and FEP Teflon single jacket (Symbol 09) preferred as first choice.
 Example of complete part number with above options for three #22 AWG conductors: M27500-22RC3S09 or M27500-22SP3S09.
 Consult NEMA-WC27500 (Electrical Cable; supersedes MIL-C-27500) for additional construction options.

M27500	Х	XX	XX	<u>X(</u>	<u>X)</u>	X	XX
	I		Basic Wir	e N	ο.	Shield Style	Outer
Military	Braid Coverage	Wire AWG	Insulation T	/pe Of W	lires	and Material	Jacket
Specification	- = 85%	26 thru 2/0		1 thr	u 15	Round Shield with	00=No Jacket
Number	C = 90%	(All conductors	PTFE Tefl	on (Note	8.4)	normal strength copper	
	(Note 8.2)	are same AWG)	LE=MIL-W-22	759/9		strands	Single Jacket
			RC=MIL-W-227	759/11			06=PTFE Teflon
			RE=MIL-W-227	759/12		U = No Shield	(White)
			TK=MIL-W-227	59/20			09=FEP Teflon
			TM=MIL-W-227	59/22		Single Layer Shield	(White)
			TN=MIL-W-227	59/23		S=Silver	23=Crosslinked
						T = Tin	ETFE (White)
			ETFE				
			TE-MIL W 22	2750/16		Double Layer Shield	Double Jacket (Note 8.3)
			IL-MIL-W-22	./ 59/10		W-Silver	50=FED Teflon
						w-silver	
			Crosslinked	ETFE			(white)
		SB=MI	L-W-22759/32	SM=MIL-W-22759	9/41		/3=Crosslinked
		SC=MI	L-W-22759/33	SP=MIL-W-22759	/43		
		SD=MI	L-W-22759/34	SR=MIL-W-22759	/44		

10.2/ Designation shown for braid coverage includes preferred conductor identification method (white base color with color spiral stripe.) Optional solid identification color coding is available.

- 10.3/ The double jacket symbol shall only be used in conjunction with a double shield symbol. The first jacket appears between the two shields and the second jacket over the outer shield. Both jackets are the same material.
- 10.4/ Number of conductors shall be 1 to 15 for shielded-jacketed conductors, and 2 to 15 for unshielded-jacketed cables. Cables with 10 to 15 conductors shall be limited to AWG 12 and smaller.

Insulation Types	Advantages	Disadvantages			
FEP	 Excellent high temperature properties. PTFE Teflon is preferred for solder applications. FEP is preferred for jacket material. 	 Susceptible to cold flow when stressed(bent) over tight radius or when laced too tightly. 			
and	2. Non-flammable.	2. Degraded by solar radiation above 5x10 ⁵ RADS.			
PTFE	3. Good outgassing characteristics.	3. FEP has poor cut through resistance.			
(DuPont™ Teflon) 3/	4. Most flexible of all Insulations.	4. Heaviest insulation.			
	5. Resists moisture absorption and atomic oxygen erosion.				
	1. Withstands physical abuse during and after installation.	1. Some ETFE Insulations fail flammability in a 30% oxygen			
Extruded ETFE	2. Good high and low temperature properties.	environment.			
	3. High flex life.	2. Insulation tends to soften at high temperature.			
(DuPont™ Tefzel)	4. Fair cold flow properties	3. Degraded by gamma radiation above 10 ⁶ rads			
		4. Sensitive to degradation from ultraviolet light.			
		5. Some ETFE insulations(primarily white) are known to			
		outgas trace amounts of fluorine over time, which can			
		cause corrosion of unprotected metals in sealed or			
		confined environments.			
		6. Some ETFE(Ethylene Tetrafluoroethylene) insulated wire			
		has been found to fail flammability testing in a 30%			
		oxygen environment.			

Table 1C INSULATION SELECTION GUIDELINES 1/, 2/

	1.	Higher strength than extruded ETFE.	1.	Some ETFE insulations fail flammability in a 30% oxygen
Crosslinked ETFE	2.	Resistant to cold flow and abrasion.		environment.
	3.	More resistant to radiation effects (to 5×10^7 RADS)	2.	Less flexible than extruded ETFE. More difficult to strip.
(DuPont™ Tefzel)	4		3.	Some ETFE(Ethylene Tetrafluoroethylene) insulated wire
	ч.	improved physical stability at high temperature than extruded ETTE.		has been found to fail flammability testing in a 30%
				oxygen environment.
			4.	Sensitive to degradation from ultraviolet light.
			5.	Some ETFE insulations (primarily white) are known to
				outgas trace amounts of fluorine over time, which can
				cause corrosion of unprotected metals in sealed or
				confined environments.

Table 1C INSULATION SELECTION GUIDELINES 1/, 2/

Insulation Types	Advantages	Disadvantages
Aromatic Polyamide (DuPont ™Kapton) 4/	 Lightest weight wire insulation material. Commonly used with FEP or PTFE Teflon to form layered insulation tapes. Excellent physical thermal and electric properties. Excellent cut- through resistance and cold flow resistance. Excellent radiation resistance (to 5 x 10⁹ RADS). Good outgassing characteristics. 	 Inflexibility – difficult to strip. Absorbs moisture. Degraded by atomic oxygen. Prone to wet-arc and dry-arc tracking from abrasions and cuts. More difficult to flex. Not stable to ultraviolet radiation.
Crosslinked Polyalkene	 Dual extrusion, which is fused by sintering. Combines excellent abrasion and cut through resistance of Polyvinylidene Fluoride (PVDF, PVF2 – Penwalt Corp TM Kynar) with Polyolefin for greater flexibility and improved heat resistance. Polyalkene is used mainly as a primary insulation under an outer jacket such as crosslinked ETFE or crosslinked PVDF/PVF2. High dielectric constant, used in high voltage applications. PVDF has good radiation resistance (to 10⁸ RADS). More resistant to cold flow. Good outgassing characteristics. 	 Lower maximum conductor temperature rating. (135°C for GSFC <u>S-311-P-13)</u> (150°C for <u>MIL-W-81044)</u> Reduced flexibility.

Silicone Rubber	1. Flexible at low temperatures.	1. Must be processed for outgassing control.
	2. Resistant to atomic oxygen.	2. Low mechanical strength.
	3. Excellent corona resistance in high voltage applications	3. Flammable.
	4. Good radiation resistance.	

Notes:

- 1/ Flammability properties of these wires are controlled by the applicable specifications.
- 2/ Wire size AWG 24 and larger is preferred for conductors used in interconnecting cable and harness assemblies. High strength copper alloy shall be used for size AWG 24 and smaller. Use of wire smaller than 26 AWG in interconnecting cables is discouraged.
- 3/ Due to the cold flow phenomena of Teflon insulation, the designer is advised to not route Teflon insulated wires over sharp edges and tight turns, or apply tight stitches and tie wraps to cable assemblies.
- 4/ Polyamide wire may be preferred for its light weight and excellent mechanical, electrical, and radiation resistance properties. However, the insulation of this wire has known reliability problems in certain applications. Extended exposure to moisture or alkaline cleaning chemicals has been shown to degrade the insulation's mechanical strength, resulting in flaking of the outer insulation tape, and cracking from vibration or movement when installed around tight radius bends. The resulting degradation may lead to flashover, arc tracking, and shorting, which may ignite the insulation.

Table 2A SCREENING REQUIREMENTS FOR INSULATED WIRE (Page 1 of 2) 8/

		Sample Quantity (No Rejects Allowed)					
Inspection/Test	Test Methods, Conditions, and	Leve	el 1	Leve	el 2	Leve	el 3
	Requirements	Mil	Com'l/	Mil	Com'l/	Mil	Com'l/
			SCD		SCD		SCD
Visual / Mechanical 1/, 3/	Inspect for proper marking, insulation, and color coding (if		1 foot		1 foot		1 foot
	applicable). Check insulation workmanship for cracks, splits. Use	7/	sample	7/	sample		sample
	3x magnification and adequate lighting.		per		per		per
	Verify finished wire diameter per reference specification. Verify		spool		spool		spool
	proper number of wire strands and AWG of strands. Verify weight						
	as necessary. Inspect for discoloration or corrosion of the strands.						
	Wire plating finish shall not flake off from normal flexing.						
Insulation Flaws Test 6/	Determine the presence of insulation faults by performing the		Entire		Entire		Entire
(For finished wire and primary	Impulse Dielectric test per MIL-STD-2223 (Test Methods, Insulated	6/	length	6/	length		length
insulation of dual insulated wire.)	Wire), method 3002. Wire shall be passed through an electrode		2/		2/		2/
	bead chain electrode head, which will give intimate metallic contact						
	with the wire insulation surface. Voltage potential as specified shall						
	be applied between the electrode and conductor. Wire lengths with						
	failed insulation shall be removed. Note 5						
Wrap Test 4/	MIL-W-22759, paragraph 4.6.3.3. Wire shall be bent back on itself,		1 foot		1 foot		
(Extruded Insulations)	and one end shall be wound tightly around the other as a mandrel		sample		sample		
, · · · · · · · · · · · · · · · · · · ·	for four close turns. Sample shall be baked for 2 hours at the		per		per		
	specified temperature. After cooling, examine for cracked		spool		spool		
	insulation.						

Table 2A SCREENING REQUIREMENTS FOR INSULATED WIRE (Page 2 of 2)

			Sample Quantity (No Rejects Allowed)						
Inspection/Test	Test Methods, Conditions, and	Leve	el 1	Level 2		Level 3			
	Requirements	Mil	Com'l/	Mil	Com'l/	Mil	Com'l		
			SCD		SCD		/SCD		
Crosslinking Proof Test (Crosslinked ET	MIL-STD-2223, Method 4001. Sample shall be prepared by remo		2 foot		2 foot				
FE Insulations Only)	ving one inch of insulation from each end anddraping it over a ma		sampl		sampl				
	ndrel rod with diameter as specified. The ends shall be loaded wit		е		е				
	h weights as specified. Thesample shall be baked for 7 hours at 3								
	00 °C or as otherwise specified in an air circulation oven. At compl								
	etion of bake, the sample shall be allowed to cool to room temper								
	ature and shall be examined for color retention and pitting. The sa								
	mple shall be removed from the mandrel and shall be subjected to								
	the bend test of method 2006, followed by the wet dielectric test of								
	method 3005.								
Lamination Sealing Test (Tape	MIL-DTL-81381, paragraph 4.6.4.10. Sample shall be baked at the		1 foot		1 foot				
Sintered Insulations)	specified temperature for 48 hours. After cooling, visually examine		sample		sample				
	for delamination of the insulation.		per		per				
Conductor Resistance	FED-STD-228 (Test Methods, Wire and Cable), Method 6021.		Eachl		I				
	Measurements (in ohms/1,000 ft. @ 20 °C) shall conform to MIL-		spool						
	W-22759, Table II limits or as otherwise specified. Wire shall be								
	tested dry without immersion.								

Notes:

- 1/ A certificate of compliance from the manufacturer shall be delivered with the wire to certify that the proper conductor material and finish were used in the manufacture of the wire.
- 2/ Insulation flaws test is normally a 100% screening test of primary insulation for dual layer insulated wire or finished wire. It is normally performed by the manufacturer during final winding of the wire on spools or reels. A certificate of compliance from the manufacturer that all

wire delivered to the user was subjected to and passed the impulse dielectric test is sufficient to meet this requirement. Otherwise, wire shall be screened as an incoming inspection test by the user or user designated test facility.

- 3/ For uncertified high strength copper wire procured from a supplier which does not have a history of supplying high reliability military or space grade wire, a mechanical pull test of a sample of the conductor stranding is recommended. Wire break strengths are provided in table I of <u>ASTM-B624</u>.
- 4/ Wrap test is used to determine if wire insulation is over sintered and could have degraded properties. For military wire, it is recommended on each lot as part of user's receiving inspection, but is not a requirement of this document. For Teflon insulated wire, Differential Scanning Calorimetry (DSC) per<u>ASTM-E794</u>may also be performed to determine if wire is under sintered from incomplete processing. Either condition can lead to cracked insulation during use.
- 5/ The High Frequency Spark test, <u>MIL-STD-2223</u> method 3008, is an acceptable alternate to the Impulse Dielectric test.
- 6/ 100% re-screening for insulation flaws may be performed by the user at the user's discretion, but is not a requirement of this document.
- 7/ Performance of mechanical construction analysis on a one foot sample is recommended in order to check for plating porosity and corrosion. This may be performed as part of user's receiving inspection, but is not a requirement of this document.
- 8/ For insulation materials with known outgassing instability a bakeout to reduce outgassing may be performed prior to use. Or, a bakeout to control outgassing and contamination due to handling during hardware fabrication may be performed at next assembly level. Refer to Outgassing paragraph, front of this Section.

Test Methods, Conditions, and Sample Quantity (No Rejects Allowed)							
Inspection/Test	De minere este	Level 1			1 2	Leve	13
Inspection/rest	Requirements	NFMA/	Com'l/	NFMA	Com'l/	NEMA	Com'l/
		Mil	SCD	/Mil	SCD	/Mil	SCD
			000	,	000	,	000
Visual / Mechanical 1/	Inspect coating for workmanship. Coating shall be complete without		1 foot		1 foot		
	porosity, blisters, wrinkles or runs. No portion of the conductor	6/	sample	6/	sample		
	shall be exposed.		per		per		
	Verify finish and wire dimensions per reference		spool		spool		
	specification.						
Adherence and Flexibility 2/	a)With a 12 inch specimen clamped at 10 inches between jaws,		1 foot		1 foot		
	elongate, and examine for insulation separation from the wire	6/	sample	6/	sample		
	as specified. 3/		per		per		
	b)Wind around mandrel diameter as specified for 10 closely		spool		spool		
	spaced turns and examine for cracks orseparation. For wire						
	smaller than AWG 30, a 1/64 inch drill bit may be substituted.						
	3/						
Heat Shock 2/	Place the stretched and wound sample prepared from above in an		1 foot		1 foot		
	oven and bake at max rated temperature +20°C or as specified in		sample		sample		
	the detail spec, for 30 minutes. Examine for cracks at specified		per		per		
	magnification. 3/		spool		spool		
Dielectric Strength Twist Test	ASTM-D1676 (Test Methods for Magnet Wire), Paragraph		Two-		Two-		
	71.1. Twist two pieces of wire together for a distance of		one		one		
	4.75 inches. Number of twists shall be as specified in ASTM-		foot		foot		
	D1676 Table 7. Loop the ends of each conductor together, and		sample		sample		
	attach the positive lead to one conductor and the negative to the		s per		s per		
	second conductor. Gradually apply voltage until the rated voltage		spool		spool		
	is reached and hold for five seconds. There shall be no						
	breakdown.						

Table 2B SCREENING REQUIREMENTS FOR COATED MAGNET WIRE 4/, 5/, 7/ (Page 1 of 2)

Table 2B SCREENING REQUIREMENTS FOR COATED MAGNET WIRE (Page 2 of 2)

Notes:

- 1/ Upon request, producers of NEMA<u>MW1000</u>specification magnet wire are expected to supply the user with test data in support of the thermal class of the magnet wire. A certificate of compliance from the manufacturer shall be delivered with the wire to certify that the proper conductor material and resin coating were used in the manufacture of the wire.
- 2/ When Adherence and Flexibility test is performed, Heat Shock test must follow. At the project's option, when this data is available from the manufacturer, this test can be waived.
- 3/ Elongation requirements:

AWG	Elongation Rate	Minimum	Mandrel Diameter	Examined With
Size	Ŭ	Elongation		
Copper				
4-9	12 +_1 in./min (300 25 + mm/min)	30%	none	Normal vision.
10-13	12 +_1 in./min (300 25 + mm/min)	25%	5 x sample diameter	Normal vision.
14-30	sudden jerk (2 ft/sec, min)	20%	3 x sample diameter	3X-10X magnification
31-44	sudden jerk (2 ft/sec, min)	20% or breakage	3X or 0.0156 (1/64	6X-20X magnification
			inch) drill bit,	
			whichever is greater	

- 4/ Test methods in NEMA MW1000 (Magnet Wire) are based on ASTM-D1676.
- 5/ Magnet wire older than two years from manufacture date must be re-screened prior to use.
- 6/ Performance of mechanical inspection analysis on a one foot sample is recommended in order to check for coating porosity and cracking. Performance of Adherence and Flexibility on a one foot sample is also recommended. May be performed as part of user's receiving inspection, but is not a requirement of this document.
- 7/ For insulation materials with known outgassing instability a bakeout to reduce outgassing may be performed prior to use. Or, a bakeout to control outgassing and contamination due to handling during hardware fabrication may be performed at next assembly level. Refer to Outgassing paragraph, front of this Section.

Table 2C SCREENING REQUIREMENTS FOR RADIO FREQUENCY COAXIAL CABLE 4/

	Test Methods, Conditions, and	Sample Quantity (No Rejects Allowed)					
Inspection/Test	Requirements	Leve	el 1	Leve	2	Leve	3
		Mil	Com'l/	Mil	Com'l/	Mil	Com'l
			SCD		SCD		/SCD
Visual / Mechanical 1/	Inspect for proper marking. Check outer jacket for cracks, splits.		1 foot		1 foot		1 foot
	Use 3X magnification and adequate lighting. Verify dimensions per		sample		sample		sample
	reference spec. Verify quantity and AWG of inner conductor and		per		per		per
	shield strands. Inspect for discoloration or corrosion of the center		spool		spool		spool
	conductor and shield strands. Verify weight as necessary.						
Jacket Flaws	Determine the presence of jacket flaws by performing the Impulse		Entire		Entire		Entire
(Not Applicable to Copper Clad	Dielectric test per MIL-STD-2223 (Test Methods, Insulated Wire),		length		length		length
Semi-rigid Cable)	method 3002. Finished cable shall be passed through an energized		2/		2/		2/
	bead chain electrode head which will give intimate metallic contact						
	with the cable outer jacket. A voltage as specified in the reference						
	spec at a frequency of 60Hz or 3K Hz shall be applied between the						
	shield and electrode. Cable lengths which failed shall be removed						
	(Note 3).						
Continuity	Apply 25 V DC max to both ends of center conductor,		Each		Each		Each
	followed by both ends of shield through an indicator (meter,		spool		Spool		spool
	light, or buzzer)						
Voltage Withstanding	FED-STD-228 (Test Methods, Cable and Wire), Method 6111,		Each		Each		
	except cable shall be tested dry without immersion. Apply voltage		spool		spool		
	(potential as specified) between inner conductor and shield with		2/		2/		
	the shield grounded.						

Notes:

1/ A certificate of compliance from the manufacturer shall be delivered with the wire to certify that the proper inner conductor, shield materials and finish were used in the manufacture of the wire.

- 2/ Test is used as a 100% screening test of finished cable during final winding of the wire on spools or reels by the manufacturer. A certificate of compliance from the manufacturer that all cable delivered to the user was subjected to and passed the spark test or voltage withstanding test is sufficient to meet this requirement. Otherwise, cable shall be screened as an incoming inspection test
- 3/ The High Frequency Spark test, MIL-STD-2223 method 3008, is an acceptable alternate to the Impulse Dielectric test.
- 4/ For insulation materials with known outgassing instability a bakeout to reduce outgassing may be performed prior to use. Or, a bakeout to control outgassing and contamination due to handling during hardware fabrication may be performed at next assembly level. Refer to Outgassing paragraph, front of this Section.

Table 2D SCREENING REQUIREMENTS FOR MULTICONDUCTOR CABLE 5/

Inspection / Test Requirements Level 1 Level 2 Level 3 Mil Com'l/ Mil <t< th=""><th>3 Com'l /SCD</th></t<>	3 Com'l /SCD
Mil Com'l/ Mil Com'l/ Mil Com'l/	Com'l /SCD
	/SCD
SCD SCD /S	
Visual Inspect for proper marking. Check outer jacket for cracks, splits. 1 foot 1 foot 1	1 foot
Mechanical 1/ Use 3X magnification and adequate lighting. 4/ sample 4/ sample sample	sample
Verify number of conductors, AWG and stranding of conductors, per per per	per
color coding or special marking of conductor insulations (as spool spool spool spool	spool
required). Inspect strands of conductors and shield for corrosion or	
other discoloration, and inspect for mechanical damage or flaking of	
the finish. Measure jacket thickness. Verify weight as required.	
Jacket Flaws (Outer Jacket) MIL-STD-2223 (Insulated Wire Test Methods), method 3002. Entire Entire	Entire
Finished cable shall be passed through an energized bead chain length Length length	length
electrode head which will give intimate metallic contact with the 2/ 2/	2/
cable outer jacket. A potential of 1500 VAC at 60Hz shall be	
applied between the shield and spark electrode. Remove failed	
cable lengths (Note 3)	
Dielectric Withstanding Voltage MIL-STD-2223, Method 3005. Immersion is not required. Each Each Each	
(Between Component Wires) conductor shall be tested against all others tied together with the spool spool	
shield (as applicable). Testing voltage shall be 1500V RMS for 2/ 2/	
600V rated conductors and 2,500V for 1000V rated conductors.	
Time of applied voltage shall be between 15 and 30 seconds.	
Conductor and Shield Continuity All conductors and the shield of all finished cable shall be tested 2/ 2/	2/
for continuity with an ohmmeter or other tester. Each Each Each	Each
spool spool sp	spool

Notes:

1/ A certificate of conformance from the manufacturer shall be delivered with the cable to certify that the proper conductor finish, insulation and

jacket materials were used, and that the shield material, finish and shield coverage are correct as specified in the reference specification or SCD.

- 2/ Test is normally a 100% screening test of finished cable performed during final winding of the cable on spools or reels by the manufacturer. A certificate of compliance from the manufacturer that all cable delivered to the user was subjected to and passed the test is sufficient to meet this requirement. Otherwise, cable shall be screened as an incoming inspection.
- 3/ The High Frequency Spark test, MIL-STD-2223 method 3008, is an acceptable alternate to the Impulse Dielectric test. The Spark test of MIL-STD-2223, Method 3001, is also acceptable.
- 4/ Performance of mechanical construction analysis on a one foot sample is recommended in order to check shield stranding for plating porosity and corrosion. This may be performed as part of user's receiving inspection, but is not a requirement of this document.
- 5/ For insulation materials with known outgassing instability a bakeout to reduce outgassing may be performed prior to use. Or, a bakeout to control outgassing and contamination due to handling during hardware fabrication may be performed at next assembly level. Refer to Outgassing paragraph.

Table 2E SCREENING REQUIREMENTS FOR FLEXIBLE PRINTED CIRCUIT CABLES

(REF IPC-6013; Page 1 of 2)

	Test Methods, Conditions, and	Quantity (Accept No.)		
Inspection / Test	Requirements	Level 1	Level 2	Level 3
	· · · · · ·	Com'l/SCD	Com'I/SCD	Com'I/SCD
Visual / Mechanical Inspection 1/	Ref IPC-6013 (Flexible Printed Boards). Visually inspect surface at 10X			
	magnification, min, using transmitted and reflected lighting.Inspect for			
	excessive blisters, delamination, pinholes, conductorthinning, scratches, tool	100% of	100% of	100% of
	marks, contaminants and burrs. Edges shall be clean cut and free of	Flexible	Flexible	Flexible
	nicks, tears and burrs. Accept criteriashall be as required by IPC-6013,	Circuits	Circuits	Circuits
	paragraphs 3.3.1 through 3.3.9, for class 3 high reliability parts. If the			
	condition of a suspect defectcannot be identified, use of progressively higher			
	magnification up to 40X may be used.			
Continuity	IPC-6013, paragraph 3.9.2.1 or MIL-P-50884 (Printed Wiring, Flexible),	100% of	100% of	
	paragraph 4.8.6.3.2. A current of 250mA shall be passed through each	Flexible	Flexible	
	conductor of the flex circuit. (Table 1B, Note 7.)	Circuits	Circuits	
Insulation Resistance	MIL-STD-202, Method 302, Test Condition A (100VDC). Theflex circuit will	100% of	100% of	
	be checked for short circuits by applying potentialbetween conductors.	Flexible	Flexible	
	Measurements shall not be less than 500Megohms.	Circuits	Circuits	
Processing for Outgassing Control	Outgassing paragraph, page 1 (Front of this Section).	As required	As required	As required
(Contamination Controlled				
Applications)				

Notes:

1/ Rework and Repair are permitted as agreed upon between the user and supplier to touch up minor surface imperfections, but shall not impact performance requirements.

Table 2E SCREENING REQUIREMENTS FOR FLEXIBLE PRINTED CIRCUIT CABLES

(REF IPC-6013; Page 2 of 2)

	Test Methods, Conditions, and	Quantity (Accept No.)			
Inspection / Test	Requirements	Level 1	Level 2	Level 3	
		Com'I/SCD	Com'I/SCD	Com'I/SCD	
Thermal Stress / Coupon Analysis	Perform thermal stress testing per the requirements of IPC-				
	6013, table 4-1. In lieu of coupons, production samples may be				
(Doublesided or Multilayer	used. Ref IPC-TM-650 Method 2.6.8, specimen shall be				
Laminated Specimens)	conditioned at 120°C to 150°C for 6 hours minimum toremove				
. ,		4(0) coupons	2(0) coupons per		
	moisture. Place specimen in a moisture absorption dessicator and	per panel	panel		
	allow to cool. Specimen shall be fluxed with Type RMA flux per	(each corner)	(from opposite		
	MIL-T-14256 or Type ROL1 per J-STD-004 and laid on a		corners)		
	solder bath of SN63 solder per QQ-S-571 or Sn63Pb37 per J-				
	STD-006 maintained at 288°C +5°C for 10 seconds. Remove,				
	allow to cool. Using transmitted and reflected lighting, at 10X				
	magnification min, inspect for lifted lands, cracks, blistering or				
	delaminations, separation of plating from conductors in excess of				
	allowable limits of IPC-6013, paragraphs 3.3.1 through 3.3.9 for				
	class 3 high reliability parts. For lifted lands, the maximum				
	allowable separation distance between conductor and substrate				
	material shall not exceed 0.001 inches. Amount of lifted land				
	shall not exceed 50% of the land area.				
	Post exposure cross section analysis of conductors and plated				
	through holes shall comply with IPC-6013, table 3-8 for class 3				
	(High Reliability) devices. Inspect conductors using 100X				
	magnification, minimum. Transmitted and reflectedlighting				
	shall be used. Conductor minimum width shall not be less than				
	80% of the conductor pattern specified in the procurement				
	drawing. Conductors shall not contain cracks, splits or tears in				
	the internal foil or plating. If the condition of a suspect defect				
	cannot be identified, use of progressively higher magnification				
	up to 200X may be used.				
Thermal Stress / Coupon Analysis	Perform testing as above, except plated through hole analysis N/A.	4(0) coupons	2(0) coupons per		
	Use a 2 inch by 2 inch specimen cut from each sample. In lieu of	per panel	panel		
(Single Layer Laminated Specimens)	flux, Dow Corning Silicon Fluid No. 704 or equivalent may be	(each corner)	(from opposite		
	used to coat the side that will be placed in contact with the solder		corners)		

Table 3A QUALIFICATION REQUIREMENTS FOR INSULATED WIRE (Page 1 of 3)

	Test Methods, Conditions, and	Sample Quantity (No Rejects Allowed)		
Inspection/Test	Requirements	Level 1	Level 2	Level 3
Perform screening to Table 2A 1/	Visual/mechanical, insulation flaws test, wrap test, Crosslinking Proof	0	0	0
	test (as required in Table 2A).			
Insulation Resistance	MIL-STD-2223 (Test Methods, Insulated Wire), Method 3003. Sample			
	shall have 1 inch of insulation removed from each end, and the ends shall	26 feet per lot,	26 feet per lot,	
	be twisted together. The test specimen shall be immersed within six inches	minimum	minimum	
	of each end in a water bath as specified. After 4 hours immersion time,			
	apply a potential of 500 volts between the conductor and the water bath			
	which serves as the second electrode. Insulation resistance shall be			
	measured after 1 minute and shall be converted to megohms per 1000 FT.			
	Measurement shall not be less than specified value.			
Conductor Resistance	FED-STD-228 (Test Methods, Wire and Cable), Method 6021. Wire shall	Each spool	Each spool	Each spool
	be tested dry without immersion. Measurements shall conform to MIL-W-			
	_22759 Table II.			
Conductor Splices	There shall not be more than one strand splice in any two lay lengths	Each lot	Each lot	
	of a stranded concentric lay or rope lay conductor.			
	Splices shall not increase conductor diameter at point of brazing.	2/	2/	
Solderability (Tin or silver coated	MIL-STD-202, Method 208. Steam aging is not required.	1 foot per	1 foot per lot	
conductors only)	Conductors shall demonstrate proper solder wetting.	spool		
Lamination Sealing Test (Tape	MIL-W-81381, paragraph 4.7.4.10. Sample shall be baked at the specified	1 foot per	1 foot per lot	
sintered insulations)	temperature for 48 hours. After cooling, visually examine for	spool		
	delaminations of the insulation.			
Flammability 3/	MIL-W-22759, Paragraph 4.6.3.1.4. In chamber, adjust burner for a	2 foot sample		
(When Necessary)	blue flame, approximately 2 inches long. Suspend test specimen at a	per lot		
	600 angle form horizontal. Apply flame for 15 seconds for size 30			
	10 through 4. The distance of flame travel upward along the specimen			
	and the time of flaming after removal of the flame shall be recorded and			
	shall fall within acceptable limits.			

	Test Methods, Conditions, and	Sample Quantity (No Rejects Allowed)		
Inspection/Test	Requirements	Level 1	Level 2	Level 3
Insulation Blocking	MIL-W-22759 Paragraph 4.6.3.5. Affix one end of the sample to a metal	2 foot sample	2 foot sample	
	spool with diameter 50X diameter of finished wire for size 30 through 14,	per lot	per lot	
	40X for size 12 and 10, and 30X for sizes 8 through 2. The wire shall be			
	wound on the spool for at least three turns, with the turns touching each			
	other. Affix the free end toprevent unwinding or loosening. Place in an			
	oven and bake for 24 hours at the specified temperature. After cooling,			
	the wire shall be unwound and examined for adhesion (blocking) between			
	adjacent turns.			
Cold Bend	MIL-W-22759, Paragraph 4.6.3.2. Affix one end of the sample to a metal	3 foot sample		
	spool with diameter as specified. Place mandrel and sample inside a	per lot		
	cold chamber. Provision shall be made to turn the mandrel by a handle			
	or control external to the chamber.			
	Condition for 4 hours at temperature specified. At the end of 4 hours			
	conditioning, slowly wind the specimen on the mandrel for its entire			
	length. Remove from the chamber, and allow to warm to room			
	temperature. Visually examine for cracked insulation. Post dielectric test			
	is not required.			
Concentricity of Finished Wire	Wire shall be cross sectioned (potted if necessary) and wall thickness	1 foot sample		
	measurements shall be made. For concentric-lay wires, 100 x the	per lot		
	minimum wall thickness to maximum wall thickness shall define %			
	concentricity. Ratio shall not be less than 70%.			
Elongation and Tensile strength of	FED-STD-228, Method 3211. For sizes 20 and larger, test shall be	1 foot sample		
Finished Wire	performed on individual strands from the conductor. For sizes 22 and	per lot		
	smaller, tests shall be performed upon the whole conductor removed from			
	the finished wire and elongation shall be measured when the first strand of			
	the conductor breaks.			
	Tensile strength shall be in accordance with the applicableconductor			
	material specification. (EX: ASTM-B298 for silver coated normal			
	strength conductors)			

Table 3A QUALIFICATION REQUIREMENTS FOR INSULATED WIRE (Page 2 of 3)

Table 3A QUALIFICATION REQUIREMENTS FOR INSULATED WIRE (Page 3 of 3)

Test Methods, Conditions, and	Sample Quantity (No Rejects Allowed))
Requirements	Level 1	Level 2	Level 3
Strip one inch from each end of the sample. Cut must be square and	14 inch sample		
perpendicular. Measure length of exposed conductor to the nearest 0.01	per spool		
inch. Bake at temperature specified for 6 hours in an air circulating			
oven. Remove and allow to cool to room temperature. Remeasure			
length of exposed conductor. Amount insulation has receded (shrink)			
from either end shall fall within the specified value.			
Outgassing paragraph (Front of this socian)			
	Test Methods, Conditions, and Requirements Strip one inch from each end of the sample. Cut must be square and perpendicular. Measure length of exposed conductor to the nearest 0.01 inch. Bake at temperature specified for 6 hours in an air circulating oven. Remove and allow to cool to room temperature. Remeasure length of exposed conductor. Amount insulation has receded (shrink) from either end shall fall within the specified value. Outgassing paragraph (Front of this section)	Test Methods, Conditions, and Sample Quantitions Requirements Level 1 Strip one inch from each end of the sample. Cut must be square and 14 inch sample perpendicular. Measure length of exposed conductor to the nearest 0.01 per spool inch. Bake at temperature specified for 6 hours in an air circulating per spool oven. Remove and allow to cool to room temperature. Remeasure length of exposed conductor. Amount insulation has receded (shrink) from either end shall fall within the specified value. Outgassing paragraph (Front of this section)	Test Methods, Conditions, and Sample Quantity (No Rejects Allowed) Requirements Level 1 Level 2 Strip one inch from each end of the sample. Cut must be square and 14 inch sample perpendicular. Measure length of exposed conductor to the nearest 0.01 inch. Bake at temperature specified for 6 hours in an air circulating per spool Per spool oven. Remove and allow to cool to room temperature. Remeasure Level 1 Level 2 length of exposed conductor. Amount insulation has receded (shrink) Level 1 Level 2 from either end shall fall within the specified value. Level 1 Level 2 Outgassing paragraph (Front of this section) Level 2 Level 2

Notes:

- 1 / For wire that has been previously screened per Table 2A, screening tests do not need to be repeated as part of qualification testing.
- 2/ The manufacturer shall certify that the splicing requirement has been met.
- 3/ For insulation types that have unknown flammability properties (Reference flammability paragraph in front of this section), when necessary testing shall be performed as specified or as specified in NHB 8060.1C (NASA Handbook, Flammability, Odor, and Offgassing).
- 4/ Test is normally a 100% screening test of the primary insulation of dual layer insulated wire and finished wire. It is usually performed by the manufacturer during winding onto spools or reels and does not need to be repeated if the manufacturer can provide data that demonstrates acceptable test results.

	Test Methods, Conditions, and	Sample Quan	l)	
Inspection/Test	Requirements	Level 1	Level 2	Level 3
Perform screening to Table 2B. 1/	Visual-mechanical, adherence and flexibility, heat shock,			
	dielectrical strength twist test as required in Table 2B.			
Scrape Resistance	ASTM-D1676, paragraphs 170 through 176. Scraping device shall	Two 15 inch		
	provide a scraping action perpendicular to the test sample. A 0.009 inch	specimens		
	diameter steel music wire held rigidly between two jaws, shall provide			
	the scraping action to the wire test sample supported between two jaws.			
	Wires shall be attached to a potential of 7.5V DC, and continuity shall be			
	monitored when the chemical film finish is worn away. Initial amount of			
	force in grams shall be 90% of the force specified in the detail			
	specification. Apply increasing force until failure occurs.			
	Scraping action shall be in one direction for 4 inches at a speed of 15			
	inches per minute. Perform 3 tests on each specimen by rotating each			
	specimen on its axis to 120° and 240°. The average of the six failures			
	shall be less than the value specified.			
Thermoplastic Flow	NEMA MW-1000, para 3.50. The thermoplastic flow tester shall exert a	10 foot length	10 foot length	
	constant load perpendicular to and down directly over the right angle	cut into 10 one	cut into 10 one	
	crossover point of the specimen. The specimen temperature shall be	foot samples,	foot samples,	
	monitored with a calibrated thermocouple pyrometer and compared to a	placed at right	placed at right	
	chamber control thermocouple. Failure detector mechanism shall be	angles to create	angles to create	
	constructed to allow a current flow of 20 milliamps at 115VAC (60Hz)	five specimens	five specimens	
	between the crossed wire.			
	Load the intersection of the two lengths per Note 2. Increase chamber			
	temperature at 10°C per minute until 55°C below the rated thermoplastic			
	flow temperature in the detail specification (ref Note 3). Slow the rate of			
	increase to 5°C per minute and apply until failure is detected. Perform on			
	all 5 specimens. The median value shall be considered the actual			
	thermoplastic flow temperature for the specimen. The median value shall			
	be within 10% of the rated Thermoplastic Flow temperature.			

Table 3B QUALIFICATION REQUIREMENTS FOR COATED MAGNET WIRE (Page 1 of 2)

Notes on next page.

Table 3B QUALIFICATION REQUIREMENTS FOR COATED MAGNET WIRE (Page 2 of 2)

	Test Methods, Conditions, and	Sample Quanti	ty (No Rejects Allowed	ved)	
Inspection/Test	Requirements	Level 1	Level 2	Level 3	
Springback	ASTM-D1676 (Test Methods, Magnet Wire), paragraphs 154 and 155.	Three			
	Magnet wire is wound under mild stress on to a mandrel with diameter	specimens,			
	as listed in ASTM-D1676 table 15. The load is removed and movement	length as			
	of wire toward a relaxed position (springback) is measured. For best	required to			
	winding formability, minimal springback is desired.	provide 3			
		windings of			
		the mandrel			
Evaluation for Insulation Coating	Outgassing paragraph (Front of this section)	0	0	0	
Outgassing Properties					
(When Required)					

Notes:

- 1/ For wire that has previously been screened per Table 2B, screening tests do not need to be repeated as part of qualification testing. Exception: If the previous screening was performed more than two years earlier, screening to Table 2B must be performed.
- 2/ Thermoplastic Flow Test Loads and Flow Temperatures for preferred NEMA MW1000 magnet wire (referenced in Table 1B, note 2.):

Wire Size Ranges, (AWG)	Test Load +/-2%, Ounces (Grams)	Detail Specification	Flow Temperature
14 - 18	70.5 (2000)	MW 35-C (Heavy, Class 200)	300°C
19 - 24	35.3 (1000)	MW 30-C (Heavy, Class 180)	300°C
25 - 26	21.2 (600)	MW 16-C (Heavy, Class 240)	450°C
27 - 29	10.6 (300)		
30 - 36	8.82 (250)		
37 - 40	5.29 (150)		
41 - 44	3.53 (100)		

3/ Scrape Resistance for preferred NEMA MW 1000 detail specifications (referenced in Table 1B, note 2.)

Specification	Flow Temperature
MW 35-C (Heavy) Class 200	300°C
MW 30-C (Heavy) Class 180	300°C
MW 16-C (Heavy) Class 240	450°C

	Test Mathods, Conditions, and	Re		
Inspection/Test	Requirements	Level 1	Level 2	Level 3
Perform screening to Table 2C 1/	Visual-mechanical, jacket flaws, continuity, voltage withstanding (as required by Table 2C)	0	0	0
Characteristic Impedance	MIL-C-17, Paragraph 4.8.7. Sample shall be assembled to connectors for mating to a time domain reflectometer. The impedance of the sample shall be measured and compared to a precision airline of the same characteristic impedance of the specimen.	10 ft. min. per lot	10 ft. min. per lot	
Attenuation	MIL-C-17, paragraph 4.8.8. Cable shall be terminated to SMA type connectors. Attenuation shall fall within curves for applied power and frequency.	One sample per lot length sufficient to exhibit 1db loss, min @ low frequency		
Standing-Wave Ratio (Return Loss)	MIL-C-17, paragraph 4.8.9. Cables shall be terminated to SMA type connectors loss shall fall with curves for applied frequency.	One sample per lot length as specified		
Capacitance	MIL-C-17, Paragraph 4.8.10. Measure between inner conductor and shield with shield grounded. Measure at 1 KHZ with a capacitance bridge.	1 sample per lot, 5 ft. min	1 sample per lot, 5 ft. min	
Stress Crack Resistance (Not applicable to Semi-Rigid Cable)	Clamp one end of each specimen to a mandrel having a diameter 3X the jacket diameter of the cable. Wrap each specimen for 10 turns around the mandrel and clamp to prevent unraveling. Place in an oven for 96 hrs at 230°C. After 96hours, remove and cool to room temp for 4 hours. Unwind and examine for cracks and other flaws.	Four 3 foot samples per lot		
Bendability (Semi-Rigid Only)	Form the semirigid cable for two turns around a mandrel of diameter as specified. Remove coiled specimen and examine surface for cracks, splits or wrinkles.	Two one foot specimens per lot		

Table 3C QUALIFICATION REQUIREMENTS FOR COAXIAL CABLE (Page 1 of 2)

Table 3C QUALIFICATION REQUIREMENTS FOR COAXIAL CABLE (Page 2 of 2)

	Test Methods, Conditions, and	Sample Quantity (No Rejects Allowed)		
Inspection/Test	Requirements	Level 1	Level 2	Level 3
Dimensional Stability	MIL-C-17, paragraph 4.8.20 Flexible Cable Cut ends of cable squarely and deburr. Place in air circulated oven, coiled or straight, and bake for 6 hours, minimum at 200°C or as specified. Return to room temperature for 4 hours, minimum. Measure both ends for protrusion or contraction of the center conductor. Measured values shall conform to specified values. Semi-Rigid Cable Prepare six - 6 inch samples with squared and deburred ends. Samples shall be placed in brass fixtures and capped. Fixture shall have center diameter equal to cable outer diameter (Reference MIL-C-17 Figure 11.) Bake at 125°C for one hour in an air circulated oven. Remove and cool to room temperature for at least an hour. One at a time, remove specimens and measure both ends for protrusion or contraction of the insulation within the outer conductor. Measurements shall conform to specified values.	Flexible type, one sample per lot 5-foot, minimum Semi-rigid type, one sample per lot, 4 foot minimum		
Flammability 2/ (When necessary; not applicable to Semi-Rigid Cable)	MIL-C-17, Paragraph 4.8.23. In chamber, suspend test specimen 600 from horizontal. Adjust Bunsen burner for a blue flame approximately 3 inches long. Apply flame to the midpoint of the specimen for 30 seconds. The distance of flame travel upward along the specimen and time of burning after removal of the flame shall be recorded and shall fall within acceptable limits.	One sample 2 feet long		
Evaluation for Insulation Outgassing Properties (when required)	Outgassing paragraph (Front of this section)	0	0	

Notes:

- 1/ For cable that has been previously screened per Table 2C, screening tests do not need to be repeated as part of qualification testing.
- 2/ When insulation flammability properties are unknown (Reference flammability paragraph page 1 of this section), when necessary testing shall be performed as specified or as specified in NASA-STD-6001, previously NHB 8060.1C.

	Test Methods, Conditions, and	Sample Quantity (No Rejects Allowed)		
Inspection/Test	Requirements	Level 1	Level 2	Level 3
Perform Screening to Table 2D 1/	Visual-mechanical, jacket flaws, dielectric withstanding voltage,	0	0	0
	conductor and shield continuity.			
Thermal Shock (PTFE, FEP, Extruded	NEMA-WC27500 (Electrical Cable), para. 4.3.9. Wrap cablespecimens	10 foot sample	10 foot sample	
ETFE Jackets)	around mandrel as specified in Note 2. Wrap specimen on mandrel for			
	at least 6 close turns and secure ends to the mandrel. Bake for 4 hours			
	at 230 °C for FEP jacketed cable and 285 °C for PTFE or extruded ETFE			
	jacketed cable. At completion of test, cool and visually inspect jacket for			
	cracks without magnification.			
Crosslinked and Bend Verification Test	NEMA-WC27500, para. 4.3.11. Remove 1 inch of insulation from each	24 inch sample	24 inch sample	
(Crosslinked ETFE orCrosslinked	conductor, tie ends together, load with weights, and drape specimen			
PVF2 Jackets)	over mandrel as specified in Note 2. Treat mandrel with non-adhesive			
	Teflon tape to prevent sticking.			
	Place in oven for 6 hours at 200 °C for PVF2 jacket and 300 °C for XL-			
	ETFE. Remove, allow to cool, and straighten. Secure one end to the			
	mandrel and the other with load weight used above. Rotate mandrel			
	until full length of specimen is on mandrel. Rotate in reverse direction to			
	unwind and rewind specimen on mandrel. Unwind. Repeat mandrel			
	winding in each direction. For shielded cable, perform DWV between			
	shield and conductors. No cracking of the jacket or dielectric breakdown			
	is allowed.			

Table 3D QUALIFICATION REQUIREMENTS FOR MULTICONDUCTOR CABLE (Page 1 of 2)

Table 3D QUALIFICATION REQUIREMENTS FOR MULTICONDUCTOR CABLE (Page 2 of 2)

Note:

- 1/ For cable that has been previously screened per Table 2D, screening tests do not need to be repeated as part of qualification testing.
- 2/ Test mandrel diameters and weights.

Thermal Shock Test				
Finished Cable	Mandrel Diameter			
Diameter	(Inches)			
0 to 0.083	0.750			
0.084 to 0.111	1.0			
0.112 to 0.139	1.250			
0.140 to 0.194	1.750			
0.195 to 0.250	2.250			
0.251 to 0.334	3.00			
0.335 to 0.444	4			
0.445 to 0.556	5			
0.557 to 0.667	6			
0.668 to 0.889	8			
0.890 to 1.111	10			
1.112 to 1.556	14			
1.557 to 2.000	18			

	Crosslinked Verification Test					
Finished Cable Diameter	Mandrel Diameter (Inches)	Wire Size (AWG)	Test Load (Lbs.) (Multiply by Number of Conductors in Cable)			
0 to 0.125	3	-26	.125			
0.126 to 0.250	6	-24	.250			
0.251 to 0.360	10	-22	.375			
0.361 to 0.750	18	-20	.500			
0.751 to 1.200	30	-18	.600			
1.201 to 2.000	48	-16	.750			
		-14	1.00			
		-12	1.50			

Table 3E QUALIFICATION REQUIREMENTS FOR FLEXIBLE PRINTED CIRCUIT CABLES (REF

IPC-6013; Page 1 of 3)

	Test Methods, Conditions, and	Quantity (Accept No.)		
Inspection / Test	Requirements	Level 1	Level 2	Level 3
Visual / Mechanical Inspection	Ref IPC-6013 (Flexible Printed Boards). Visually inspect surfaceat 10X	4(0) Finished	2(0) Finished	
1/	magnification, min, using transmitted and reflected lighting. Inspect for	Flexible Circuits	Flexible Circuits	
	excessive blisters, delamination, pinholes, conductor thinning, scratches, tool			
	marks, contaminants and burrs. Edges shall be clean cut and free of nicks,			
	tears and burrs. Acceptcriteria shall be as required by IPC-6013,			
	paragraphs 3.3.1through 3.3.9, for class 3 high reliability parts. If the			
	condition of a suspect defect cannot be identified, use of progressively			
	highermagnification up to 40X may beused			
Continuity	IPC-6013 para 3.9.2.1or MIL-P-50884 para 4.8.6.3.2. A currentof 250mA	4(0) Finished	2(0) Finished	
	shall be passed through each conductor of the flexcircuit. (Note 7, Table	Flexible Circuits	Flexible Circuits	
	1B)			
Insulation Resistance (IR)	IPC-TM-650 (Test Methods, Printed Boards), method 2.6.3 or MIL-STD-	4(0) Finished	2(0) Finished	
	202, Method 302, Test Condition A (100VDC). Theflex circuit will be	Flexible Circuits	Flexible Circuits	
	checked for short circuits by applying potentialbetween conductors.			
	Measurements shall not be less than 500Megohms.			
Dielectric Withstanding Voltage	IPC TM-650 , method 2.5.7 or MIL-STD-202, method 301. Apply 1000	4(0) Finished	2(0) Finished	
(DWV)	VDC for 30 seconds or as otherwise specified. Apply between adjacent	Flexible Circuits	Flexible Circuits	
	conductor patterns and between adjacent layers, if applicable. There shall			
	be no flashover or breakdown betweenconductors			

Flexible Endurance	Flexible Endurance testing shall be performed per IPC-TM-650,method	2(0) Finished	1(0) Finished	
(If applicable by application)	2.4.3, or another test method tailored to the application.Number of flex	Flexible Circuits)	Flexible Circuits	
	cycles (sufficient to test for the application), bendradius, rate of flex and total			
	number of flex cycles shall be asspecified in the detail specification. To			
	determine end of life, visual inspection and electrical testing shall be			
	performed. Cracksgreater than 20% of the conductor width and thickness			
	arerejectable. Delaminations larger than 0.031 in any direction or that			
	bridge more than 25% between conductors shall be considered rejectable.			
	Electrical testing for discontinuity and short circuits shall be performed.			

Table 3E QUALIFICATION REQUIREMENTS FOR FLEXIBLE PRINTED CIRCUIT CABLES (REF

	Test Methods, Conditions, and	Quantity (Accept No.)		
Inspection / Test	Requirements	Level 1	Level 2	Level 3
Thermal Stress / Coupon Analysis	Perform thermal stress testing per the requirements of IPC– <u>6013,</u> table 4-1. In lieu of coupons, production samples may be used. Ref IPC-TM-650 Method 2.6.8, specimen shall be	4(0) Flexible Circuits; 2(0) If flexible	2(0) Flexible Circuits; 1(0) If flexible	
(Doublesided or Multilayer Laminated Specimens)	be used. Ref IPC-TM-650 Method 2.6.8, specimen shall be conditioned at 120°C to 150°C for 6 hours minimum to remove moisture. Remove, place specimen in a moisture absorption dessicator and allow to cool. Specimen shall be fluxed with Type RMA flux per MIL-T-14256 or Type ROL1 per J-STD-004 and laid on a solder bath of SN63 solder per QQ-S-571 or Sn63Pb37 per J-STD-006 maintained at 288°C +5°C for 10 seconds. Remove, allow to cool. Using transmitted and reflected lighting, at 10X magnification min, inspect for lifted lands, cracks, blistering or delaminations, separation of plating from conductors in excess of allowable limits of IPC-6013, paragraphs 3.3.1 through 3.3.9 for class 3 high reliability parts. For lifted lands, the maximum allowable separation distance between conductor and substrate material shall not exceed 0.001 inches. Amount of lifted land shall not exceed 50% of the land area. Post exposure cross section analysis of conductors and plated	2(0) If flexible endurance is performed	1(0) If flexible endurance is performed	
	through holes shall comply with IPC-6013, table 3-8 for class 3 (High Reliability) devices. Inspect conductors using 100X magnification, minimum Transmitted and reflectedlighting shall be used. Conductor minimum width shall not be less than 80% of the conductor pattern specified in the procurement drawing. Conductors shall not contain cracks, splits or tears in the internal foil or plating. If the condition of a suspect defect cannot be identified, use of progressively higher magnification up to 200X may be used.			

IPC-6013; Page 2 of 3)

Table 3E QUALIFICATION REQUIREMENTS FOR FLEXIBLE PRINTED CIRCUIT CABLES

	Test Methods, Conditions, and	Quantity (Accept No.)		
Inspection / Test	Requirements	Level 1	Level 2	Level 3
Thermal Stress / Coupon Analysis (Single Layer Laminated Specimens)	Perform testing as above, except plated through hole analysis N/A. Use a 2 inch by 2 inch specimen cut from each sample. In lieu of flux, Dow Corning Silicon Fluid No. 704 or equivalent may be used to coat the side that will be placed in contact with the solder	4(0) Flexible Circuits; 2(0) If flexible endurance is performed	2(0) Flexible Circuits; 1(0) If flexible endurance is performed	
Evaluation for Material Outgassing Properties (When Contamination Control Is Required)		0	0	0

(REF IPC-6013; Page 3 of 3)

Notes:

1/ For flexible printed circuits used as interconnecting cables, performance of screening prior to qualification is not a requirement for Table 3E.

2/ Rework and Repair are permitted as agreed upon between the user and supplier to touch up minor surface imperfections, but shall not impact performance requirements.